Принцип работы танкового двигателя. Танковый двигатель

Принцип работы танкового двигателя. Танковый двигатель

Под термином «оружие Победы» обычно понимают самолеты, танки, артиллерийские установки, иногда стрелковое вооружение, дошедшее до Берлина. Менее значимые разработки упоминают реже, а ведь они тоже прошли всю войну и внесли свой важный вклад. Например, дизельный двигатель В-2, без которого был бы невозможен танк Т-34. К военным и стратегическим изделиям, как известно, требования выносят более суровые, чем для «штатской» техники. Поскольку реальный срок их службы зачастую превышает лет тридцать - не только в России, но и в армиях большинства стран. Если речь о танковых моторах, они, естественно, должны быть надежными, нетребовательными к качеству топлива, удобными для обслуживания и некоторых видов ремонта в экстремальных условиях, с достаточным по военным меркам ресурсом. И при этом исправно выдавать базовые характеристики. Подход к конструированию таких двигателей особенный. И результат, как правило, достойный. Но то, что произошло с дизелем В-2, - случай феноменальный.

История создания В-2

Его жизнь началась на Харьковском паровозостроительном заводе им. Коминтерна, конструкторский отдел которого в 1931 году получил госзаказ на быстроходный дизель для танков. И сразу был переименован в дизельный отдел. В задании оговаривалась мощность 300 л.с. при 1600 об/мин, при том что у типичных дизелей того времени рабочая частота вращения коленвала не превышала 250 об/мин. Поскольку на заводе раньше ничем подобным не занимались, то начали разработку издалека, с обсуждения схемы - рядной, V-образной или звездообразной. Остановились на конфигурации V12 с водяным охлаждением, пуском от электростартера и топливной аппаратурой Bosch - с дальнейшим переходом на полностью отечественную, которую также предстояло создать с нуля. Сначала построили одноцилиндровый двигатель, потом двухцилиндровую секцию - и долго ее отлаживали, добившись 70 л.с. при 1700 об/мин и удельной массы 2 кг/л.с. Рекордно малая удельная масса также была оговорена в задании. В 1933-м работоспособный, но недоведенный V12 прошел стендовые испытания, где непрестанно ломался, страшно дымил и сильно вибрировал.

Двигатель В-2 в первоначальном виде провел на массовой военной службе более 20 лет. Отдельные экземпляры на ходу до сих пор. Еще несколько обрели покой в различных музеях.

Испытательный танк БТ-5, оснащенный таким мотором, долго не мог доехать до полигона. То картер трескался, то подшипники коленвала разрушались, то еще что-то, причем для решения многих проблем требовалось создать новые технологии и новые материалы - прежде всего, сорта стали и алюминиевых сплавов. И закупить новое оборудование за рубежом. Тем не менее в 1935-м танки с такими дизелями представили правительственной комиссии, на ХПЗ возвели дополнительные цеха для выпуска моторов - «дизельный отдел» преобразовывался в опытный завод. В процессе доводки мотора учитывалось второстепенное его предназначение - возможность использования на самолетах. Уже в 1936-м самолет Р-5 с дизелем БД-2А (быстроходный дизель второй авиационный) поднимался в воздух, но этот мотор в авиации так и не был востребован - в частности, из-за появления более подходящих агрегатов, созданных профильными институтами в эти же годы. В главном, танковом направлении дело продвигалось медленно и тяжко. Дизель по-прежнему жрал слишком много масла и топлива. Некоторые детали регулярно ломались, а слишком дымный выхлоп демаскировал машину, что особо не нравилось заказчикам. Команду разработчиков усилили военными инженерами. В 1937-м двигатель получил название В-2, под которым он и вошел в мировую историю. А команду усилили еще раз, ведущими инженерами Центрального института авиационных моторов. Часть технических проблем доверили Украинскому институту авиадвигателестроения (позже он был присоединен к заводу), пришедшему к выводу, что необходимо повышать точность изготовления и обработки деталей. Собственный 12-плунжерный топливный насос также требовал доводки.

580-сильный двигатель В-55В применялся на танках Т-62, производимых с 1961 по 1975 год. Всего выпущено порядка 20 000 машин - самих танков и различной техники, созданной на их базе.

На государственных испытаниях 1938 года все три двигателя В-2 второго поколения провалились. У первого заклинило поршень, у второго потрескались цилиндры, у третьего - картер. По итогам испытаний изменили почти все технологические операции, поменяли топливный и масляный насосы. За этим последовали новые испытания и новые изменения. Все это шло параллельно с выявлением «врагов народа» и превращением отдела в огромный Государственный завод №75 по выпуску 10 000 моторов в год, для чего станки завозили и монтировали сотнями. В 1939-м двигатели, наконец, прошли государственные испытания, получив оценку «хорошо» и одобрение на серийное производство. Которое тоже отлаживали мучительно и долго, что было, впрочем, прервано спешной эвакуацией завода в Челябинск - началась война. Правда, еще до того дизель В-2 прошел боевое крещение в реальных военных действиях, будучи установленным на тяжелые танки КВ.

В-2 в окончательном варианте

Получился мотор, про который позже напишут, что с точки зрения конструкции он сильно опередил свое время. А по ряду характеристик еще лет тридцать превосходил аналоги реальных и потенциальных противников. Хотя был далек от совершенства и имел множество направлений для модернизации и улучшений. Некоторые эксперты армейской техники считают, что принципиально новые советские военные дизели, созданные в 1960–1970 годы, уступали дизелям семейства В-2 и были приняты на вооружение лишь по той причине, что становилось уже неприлично не заменить «устаревшее» чем-то современным. Блок цилиндров и картер - из сплава алюминия с кремнием, поршни - из дюралюминия. Четыре клапана на цилиндр, верхние распредвалы, непосредственный впрыск топлива. Дублированная система пуска - электростартером либо сжатым воздухом из баллонов. Почти все техническое описание - список передовых и инновационных решений того времени.

Двигатель В-46 применен на средних танках Т-72, принятых на вооружение с 1973 года. Благодаря системе наддува снимали 780 л.с. Принципиальных отличий от В-2, прямо сказать, немного.

Он оказался сверхлегким, с выдающимся показателем удельной массы, экономичным и мощным, причем мощность легко варьировалась локальным изменением рабочих оборотов коленвала и степени сжатия. Еще до начала войны в постоянном производстве были три версии - 375-, 500- и 600-сильная, для техники разных весовых категорий. Приладив к В-2 систему наддува от авиамотора АМ-38, получили 850 л.с. и немедленно испытали на опытном тяжелом танке КВ-3. Как говорят, в бак машины с мотором семейства В-2 можно было заливать любую более-менее подходящую смесь углеводородов, начиная от бытового керосина. Это был сильный аргумент в условиях тяжелой затяжной войны - полуразрушенных коммуникаций и затрудненного обеспечения всех всем необходимым.

За разработку двигателя В-2 Т.П. Чупахину была присуждена Сталинская премия, а осенью 1941 г. завод № 75 награжден Орденом Ленина. В то время этот завод был эвакуирован в Челябинск и слился с челябинским Кировским заводом (ЧКЗ). Главным конструктором ЧКЗ по дизельным двигателям назначили И.Я. Трашутина.

Вместе с тем мотор так и не стал надежным, несмотря на требования наркома танковой промышленности В.А. Малышева. Часто ломался - и на фронте, и на различных испытаниях в годы войны, хотя с начала 1941-го выпускали уже моторы «четвертой серии». Подводили и конструкторские просчеты, и нарушения технологии изготовления - во многом вынужденные, поскольку не хватало нужных материалов, не успевали возобновлять изношенную оснастку, а производство отлаживали в дикой спешке. Отмечали, в частности, что через различные фильтры в камеры сгорания попадает грязь «с улицы» и гарантийный срок в 150 часов в большинстве случаев не выдерживается. Тогда как требуемый ресурс дизеля для танка Т-34 составлял 350 часов. Осенью 1942 г. в США для изучения были направлены танки Т-34 и KB-1. Их испытания за океаном начались 29 ноября и продолжались ровно год. В итоге двигатель у Т-34 вышел из строя через 72,5 часа, а у KB-1 - через 66,4 часа. Т-34 прошел всего 665 км. Двигатель под нагрузкой проработал 58,45 часа, без нагрузки - 14,05 часа. Всего произошло 14 поломок. В заключении по итогам испытаний отмечалось, что воздухоочиститель совершенно не годится для данного двигателя, практически не задерживает пыли, а наоборот, способствует ускорению износа и снижению надежности.

Т-34 считается первым в мире танком, разработанным под дизельный двигатель. Успешность его была предопределена, как пишут, применением новейшего высокоэкономичного дизеля авиационного типа В-2. Поэтому модернизация и «затягивание гаек» шли непрерывно. И если в 1943-м обычный срок службы мотора составлял 300–400 км, то к концу войны превышал 1200 км. А общее число поломок удалось снизить с 26 до 9 на 1000 км.

Завод №75 не справлялся с потребностями фронта, и построили заводы №76 в Свердловске и №77 в Барнауле, которые выпускали все тот же В-2 и его различные версии. Подавляющее большинство танков и часть самоходок, участвовавших в Великой Отечественной, оснащали продукцией этих трех заводов. Челябинский тракторный выпускал дизели в вариантах для среднего танка Т-34, тяжелых танков серии КВ, легких танков Т-50 и БТ-7М, артиллерийского тягача «Ворошиловец». На основе В-2 разработали В-12, позже примененный в танках ИС-4 (успел повоевать около месяца) и Т-10.

Применение двигателя В-2 на гражданке

Весь потенциал конструкции В-2 не удалось раскрыть ни до, ни во время войны - некогда было заниматься раскрытием потенциала. Но набор из различных мелких недоделок оказался прекрасной базой для развития, а сама концепция - оптимальной. После войны семейство постепенно пополнилось танковыми двигателями В-45, В-46, В-54, В-55, В-58, В-59, В-84, В-85, В-88, В-90, В-92, В-93 и так далее. Причем развитие еще не завершено, а отдельные моторы семейства серийно выпускают до сих пор.

Современный танк Т-90 сегодня оснащен мотором В-84МС (840 л.с.) или его модернизированным вариантом В-92С2 (1000 л.с.) Оба они - прямые потомки и дальнейшее развитие концепции В-2.

Танк Т-72 - основной боевой танк СССР, выпущенный тиражом порядка 30 тысяч экземпляров, получил 780-сильный мотор В-46. Современный основной боевой танк России Т-90 изначально оснащали 1000-сильным наддувным двигателем В-92. Многие тезисы описаний В-2 и В-92 полностью совпадают: четырехтактный, V-образный, 12-цилиндровый, многотопливный, жидкостное охлаждение, непосредственный впрыск топлива, алюминиевые сплавы в блоке цилиндров, картере, поршнях. Для БМП и прочей менее тяжелой техники создали рядный мотор-половинку от B-2, причем первые наработки такой схемы провели и испытали в 1939-м. Также среди прямых потомков В-2 - новое поколение X-образных танковых дизелей производства ЧТЗ (применены на БМД-3, БТР-90), где использованы половинки в другом измерении - V6. Полезен он был и на гражданской службе. В объединении «Барнаултрансмаш» (бывший завод №77) из В-2 создали рядный Д6, а позже и полноразмерный Д12. Их ставили на множество речных катеров и буксиров, на теплоходы серий «Москва» и «Москвич».

Маневровый тепловоз ТГК2, выпущенный суммарным тиражом под десять тысяч экземпляров, получил модификацию 1Д6, а 1Д12 ставили на карьерные самосвалы МАЗ. Тяжелые тракторы, локомотивы, тягачи, различные специальные машины - везде, где требовался мощный надежный дизель, вы найдете ближайших родственников великого двигателя В-2.

А «144-й Бронетанковый ремонтный завод», прошедший в составе 3-го Украинского фронта от Сталинграда до Вены, по сей день предлагает услуги по ремонту и восстановлению дизельных двигателей типа В-2. Хотя давно уже стал акционерным обществом и осел в Свердловске-19. И честно говоря, не верится, что высокая габаритная мощность, безотказность и надежность в работе, хорошая ремонтопригодность, удобство и простота обслуживания современных моторов этого семейства - просто рекламная зазывалка. Скорее всего, так оно и есть на самом деле. За что спасибо всем, кто создал и улучшал этот мотор-долгожитель.

Характеристики двигателя В-2

В-2 относился к быстроходным 4-тактным бескомпрессорным, с непосредственным впрыском топлива 12-цилиндровым тепловым машинам жидкостного охлаждения, имеющим Vобразное расположение цилиндров с углом развала 60°. Картер состоял из верхней и нижней половин, отлитых из силумина, с плоскостью разъёма по оси коленчатого вала. В нижней половине картера имелись два углубления (передний и задний маслозаборники) и передача к масляному и водяному насосам и топливоподкачивающей помпе, крепящихся снаружи картера. К верхней половине картера крепились на анкерных шпильках левый и правый блоки цилиндров вместе с их головками. В корпусе рубашки каждого блока цилиндров, изготовленного из силумина, устанавливались по шесть стальных азотированных мокрых гильз. В каждой головке цилиндров были два распредвала и по два впускных и выпускных клапана (т.е. по четыре!) на каждый цилиндр. Кулачки распределительных валов действовали на тарелки толкателей, установленных непосредственно на клапанах. Сами валы были полыми, по внутренним сверлениям подводилось масло к их опорам и к тарелкам клапанов. Выпускные клапаны не имели специального охлаждения. Для привода распредвалов использовали вертикальные валы, каждый из которых работал с двумя парами конических шестерён. Коленчатый вал изготавливался из хромоникельвольфрамовой стали и имел восемь коренных и шесть шатунных пустотелых шеек, располагавшихся попарно в трёх плоскостях под углом 120°. Коленчатый вал имел центральный подвод смазки, при котором масло подводилось в полость первой коренной шейки и по двум сверлениям в щеках проходило во все шейки. Развальцованные в выходных отверстиях шатунных шеек медные трубки, выходившие к центру шейки, обеспечивали поступление на трущиеся поверхности центрифугированного масла. Коренные шейки работали в толстостенных стальных вкладышах, залитых тонким слоем свинцовистой бронзы. От осевых перемещений коленвал удерживался упорным шарикоподшипником, установленным между седьмой и восьмой шейками. Поршни – штампованные из дюралюминия. На каждом установлены пять чугунных поршневых колец: два верхних компрессионных и три нижних маслосбрасывающих. Поршневые пальцы – стальные, полые, плавающего типа, удерживаемые от осевого перемещения дюралюминиевыми заглушками. Шатунный механизм состоял из главного и прицепного шатунов. Из-за кинематических особенностей этого механизма ход поршня прицепного шатуна был на 6,7 мм больше, чем у главного, что создавало небольшое (около 7%) различие в степени сжатия в левом и правом рядах цилиндров. Шатуны имели двутавровое сечение. Нижняя головка главного шатуна к верхней его части крепилась с помощью шести шпилек. Шатунные вкладыши были стальными тонкостенными, залитыми свинцовистой бронзой.

Пуск двигателя был дублированным, состоявшим из двух, действующих независимо систем – электрического стартера мощностью 11 кВт (15 л.с.) и пуска сжатым воздухом из баллонов. На некоторых двигателях вместо обычных электростартеров устанавливали инерционные с ручным приводом из боевого отделения танка. Система пуска сжатым воздухом предусматривала наличие распределителя воздуха и пускового автоматического клапана на каждом цилиндре. Максимальное давление воздуха в баллонах составляло 15 МПа (150 кгс/см2), а поступавшего в распределитель – 9 МПа (90 кгс/см2) и минимальное – 3 МПа (30 кгс/см2). Для подкачки топлива под избыточным давлением 0,05–0,07 МПа (0,5–0,7 кгс/см2) в питающую полость насоса высокого давления использовалась помпа коловратного типа. Насос высокого давления НК-1 – рядный 12-плунжерный, с двухрежимным (позже всережимным) регулятором. Форсунки закрытого типа с давлением начала впрыска 20 МПа (200 кгс/см2). В системе топливоподачи имелись также фильтры грубой и тонкой очистки. Система охлаждения – закрытого типа, рассчитанная на работу под избыточным давлением 0,06–0,08 МПа (0,6–0,8 кгс/см2), при температуре кипения воды 105–107°С. В неё входили два радиатора, центробежный водяной насос, сливной кран, заливной тройник с паровоздушным клапаном, центробежный вентилятор, закрепленный на маховике двигателя, и трубопроводы. Система смазки – циркуляционная под давлением с сухим картером, состоявшая из трёхсекционного шестерённого насоса, масляного фильтра, двух масляных баков, ручного подкачивающего насоса, уравнительного бачка и трубопроводов. Масляный насос состоял из одной нагнетающей секции и двух откачивающих. Давление масла перед фильтром составляло 0,6–0,9 МПа (6–9 кгс/см2). Основной сорт масла – авиационное МК летом и МЗ зимой.

Анализ параметров двигателей В-2 показывает, что они отличались от карбюраторных намного лучшей топливной экономичностью, большой габаритной длиной и сравнительно небольшой массой. Это объяснялось более совершенным термодинамическим циклом и «близким родством» с авиационными моторами, предусматривавшим длинный носок коленвала и изготовление большого числа деталей из алюминиевых сплавов.

Технические характеристики
Двигатель В-2 В-2К
Год выпуска 1939
Тип Танковый, быстроходный, бескомпрессорный, с непосредственным впрыском топлива
Число цилиндров 12
Диаметр цилиндров, мм 150
Ход поршня, мм:
  • – основного шатуна
  • – прицепного шатуна

180
186,7
Рабочий объём, л 38,88
Степень сжатия 14 и 15 15 и 15,6
Мощность, кВт (л.с.), при мин –1 368 (500) при 1 800 442 (600) при 2 000
Максимальный крутящий момент Нм (кгс·м) при 1 200 мин –1 1 960 (200) 1 960 (200)
Минимальный удельный расход топлива, г/кВт·ч, (г/л.с.·ч) 218 (160) 231 (170)
Габариты, мм 1 558х856х1 072
Масса (сухая), кг 750

В 1955 году было принято правительственное решение о создании на Харьковском заводе транспортного машиностроения конструкторского бюро по специальному дизелестроению и о создании нового танкового дизеля. Главным конструктором КБ был назначен профессор А.Д.Чаромский.



Выбор конструктивной схемы будущего дизеля определился, главным образом, опытом работы над 2-тактными дизелями ОНД ЦИАМ и двигателем У-305, а также стремлением наиболее полно удовлетворить требования конструкторов нового танка Т-64, разрабатываемого на этом заводе под руководством главного конструктора А.А. Морозова: обеспечить минимальные размеры дизеля, особенно по высоте, в сочетании с возможностью размещения его в танке в поперечном положении между бортовыми планетарными коробками передач. Была выбрана схема 2-тактного дизеля с горизонтальным расположением пяти цилиндров с противоположно движущимися в них поршнями. Решено было выполнить двигатель с надувом и утилизацией энергии выхлопных газов в турбине.

Чем же обосновывался выбор дизеля, работающего по 2-тактному циклу?

Ранее, в 20-х-30-х годах создание 2-тактного дизеля для авиации и наземных транспортных средств сдерживалось из-за многих нерешенных проблем, которые не могли быть преодолены при накопленном к тому времени уровне знаний, опыта и возможностей отечественной промышленности.

Изучение и исследования 2-тактных дизелей некоторых зарубежных фирм приводило к выводам о значительной трудности освоения их в производстве. Так, например, изучение Центральном институте авиационного моторостроения (ЦИАМ) в 30-х годах дизеля Jumo-4 конструкции Гуго Юнекерса показало значительны проблемы, связанные с освоением в производстве подобных двигателей отечественной промышленностью того периода. Было известно также, что неудачи с освоением в производства двигателя Юнкерса претерпели Англия и Япония, закупившие лицензию на этот дизель. В то же время в 30-х, и в 40-х годах в нашей стране уже велись научно-исследовательские работы по 2-тактным дизелям и изготовлялись экспериментальные образцы таких двигателей. Ведущая роль в этих работах принадлежала специалистам ЦИАМ и, в частности, его Отделу нефтяных двигателей (ОНД). В ЦИАМ были спроектированы и изготовлены образцы 2-тактных дизелей различной размерности: ОН-2 (12/16,3), ОН-16 (11/14), ОН-17 (18/20), ОН-4 (8/9) и ряд других оригинальных двигателей.

Среди них был двигатель ФЭД-8, спроектированный под руководством видных учёных-двигателистов Б.С.Стечкина, Н.Р.Брилинга, А.А.Бессонова. Он представлял собой 2-тактный 16-цилиндровый Х-образный авиационный дизель с клапонно-поршневым газораспределением, с размерностью 18/23, развивающим мощность 1470 кВт (2000 л.с.). Одним из представителей 2-тактных дизелей с наддувом стал изготовленный в ЦИАМ под руководством Б.С.Стечкина звездообразный 6-цилиндровый турбопоршневой дизель мощностью 147…220 кВт (200…300 л.с.). Мощность газовой турбины передавалась на коленчатый вал через соответствующий редуктор.

Принятое тогда при создании двигателя ФЭД-8 решение по самой идеи и конструктивной схеме представлял тогда значительный шаг вперед. Однако рабочий процесс и особенно процесс газообмена при высокой степени наддува и петлевой продувки не были предварительно отработаны. Поэтому дизель ФЭД-8 не получил дальнейшего развития и в 1937 году работы над ним были прекращены.

После войны достоянием СССР становятся немецкая техническая документация. Она попадают А.Д. Чаромскому, как разработчику авиационных двигателей, и его заинтересовывает «чемодан» Юнкерса.

«Чемодан» Юнкерса – серия авиационных двухтактных турбопоршневых двигателей Jumo 205 с противоположно движущимися поршнями была создан в начале 30-х годов двадцатого века. Характеристики двигателя Jumo 205-C следующие: 6-циллиндровый, мощность 600 л.с. ход поршня 2 x 160 мм, объем 16.62 л., степень сжатия 17:1, при 2.200 об./мин.

Двигатель Jumo 205

В годы войны было выпущено около 900 двигателей, которые успешно применялись на гидросамолетах До-18, До-27, позднее и на быстроходных катерах. Вскоре после завершения ВОВ в 1949 году было решено установить такие двигатели на восточногерманские патрульные катера, которые были в строю до 60-х годов.

На базе этих разработок А.Д.Чаромским в 1947 г. в СССР был создан двухтактный авиадизель М-305 и одноцилиндровый отсек этого двигателя У-305.Этот дизель развивал мощность 7350 кВт (10000 л.с.) при малой удельной массе (0,5 кг/л.с.) и низком удельном расходе топлива -190 г/кВтч (140 г/л.с.ч). Было принято Х-образное расположение 28 цилиндров (четыре 7-цилиндровых блока). Размерность двигателя была выбрана равной 12/12. Высокий наддув осуществлялся турбокомпрессором, механически связанного с валом дизеля. Для проверки основных характеристик, заложенных в проекте М-305, отработки рабочего процесса и конструкции деталей был построенный экспериментальный образец двигателя, имевший индекс У-305. В проектировании, доводке и испытаниях этого дизеля принимали активное участие Г.В.Орлова, Н.И.Рудаков, Л.В.Устинова, Н.С.Золотарев, С.М.Шифрин, Н.С.Соболев, а также технологи и рабочие опытного завода ЦИАМ и мастерской ОНД.

Проект полноразмерного авиадизеля М-305 не был реализован, так как работы ЦИАМ, как и всей авиационной промышленности страны, в то время уже были ориентированы на освоение турбореактивных и турбовинтовых двигателей и потребность в 10000-сильном дизеле для авиации отпала.

Полученные на дизеле У-305 высокие показатели: литровая мощность двигателя 99 кВТ/л (135л.с./л), литровая мощность с одного цилиндра почти 220 кВт (300л.с.) при давлении наддува 0,35 МПа; высокая частота вращения (3500 об/мин) и данные ряда успешных длительных испытаний двигателя – подтверждало возможность создания эффективного малогабаритного 2-тактного дизеля транспортного назначения с аналогичными показателями и элементами конструкции.

В 1952 г. лаборатория №7 (бывший ОНД) ЦИАМ правительственным решением была преобразована в Научно-исследовательскую лабораторию двигателей (НИЛД) с подчинением её Министерству транспортного машиностроения. Инициативная группа сотрудников – высококвалифицированных специалистов по дизелям (Г.В.Орлова, Н.И.Рудаков, С.М.Шифрин и др.) во главе с профессором А.Д.Чаромским уже в составе НИЛД (впоследствии- НИИД) продолжают работы по доводке и исследованию 2-тактного двигателя У-305.

Дизель 5ТДФ

В 1954 году А.Д.Чаромским было внесено предложение в правительство о создании 2-тактного танкового дизеля. Это предложение совпало с требованием главного конструктора нового танка А.А. Морозова, и А.Д. Чаромский был назначен главным конструктором завода им. В. Малышева в Харькове.

Так как танковое моторное КБ этого завода осталось в основном своем составе в Челябинске, то А.Д. Чаромскому пришлось формировать новое КБ, создавать опытную базу, налаживать опытное и серийное производство, заниматься отработкой технологии, которой не располагал завод. Работы начались с изготовления одноцилиндровой установки (ОЦУ), аналогичной двигателю У-305. На ОЦУ велась отработка элементов и процессов будущего полноразмерного танкового дизеля.

Основными участниками этих работы были А.Д.Чаромский, Г.А.Волков, Л.Л.Голинец, Б.М.Кугель, М.А,Мексин, И.Л.Ровенский и др.

В 1955 году к проектным работам на заводе по дизелю подключились сотрудники НИЛД: Г.В.Орлова, Н.И.Рудаков, В.Г.Лавров, И.С.Эльперин, И.К.Лаговский и др. Специалиста НИЛД Л.М.Белинский, Л.И.Пугачев, Л.С.Ронинсон, С.М.Шифрин проводили на Харьковском заводе транспортного машиностроения экспериментальны работы на ОЦУ. Так появляется советский 4ТПД. Это был рабочий двигатель, но с одним недостатком – мощность была чуть более 400 л.с., что для танка было мало. Чаромский ставит еще один цилиндр и получает 5ТД.

Введение дополнительного цилиндра серьезно изменило динамику двигателя. Возникла неуравновешенность, которая вызывала в системе интенсивные крутильные колебания. К ее решению подключаются ведущие научные силы Ленинграда (ВНИИ-100), Москвы (НИИД) и Харькова (ХПИ). 5ТДФ был доведен до кондиции ЭКСПЕРИМЕНТАЛЬНО, методом проб и ошибок.

Размерность этого двигателя была выбрана равной 12/12, т.е. такой же, как на двигателе У-305 и ОЦУ. Для улучшение приемистости дизеля турбину и компрессор было решено механически связать с коленчатым валом.

Дизель 5ТД имел следующие особенности:

Высокая мощность – 426 кВт (580 л.с.) при сравнительно малых габаритных размерах;

Повышенная частота вращения – 3000 об/мин;

Эффективность наддува и утилизации энергии отработанных газов;

Малая высота (менее 700 мм);

Уменьшение на 30-35% теплоотдача по сравнению с существующими 4-тактными(без наддува) дизелями, а следовательно, и меньший объем, необходимый для системы охлаждения силовой установки;

Удовлетворительная топливная экономичность и возможность работы двигателя не только на дизельном топливе, но и на керосине, бензине и различных их смесях;

Отбор мощности с обоих его концов и сравнительно малая его длина, обеспечивающая возможность компоновки МТО танка с поперечным расположением дизеля между двумя бортовыми коробками передач в значительно меньшем занимаемом объеме, чем при продольном расположении двигателя и центральной коробки передач;

Удачное размещение таких агрегатов, как воздушный компрессор высокого давления со своими системами, стартер-генератор и др.

Сохранив поперечное расположение мотора с двухсторонним отбором мощности и двумя планетарными бортовыми трансмиссиями, расположенными побортно по обе стороны двигателя, конструкторы сместили на освободившиеся места по бокам мотора, параллельно коробкам перемены передач, компрессор и газовую турбину, ранее в 4ТД смонтированные сверху на блоке двигателя. Новая компоновка позволила вдвое уменьшить объем МТО по сравнению с танком Т-54, причем из него были исключены такие традиционные узлы, как центральная КПП, редуктор, главный фрикцион, бортовые планетарные механизмы поворота, бортовые передачи и тормоза. Как отмечалось позднее в отчете ГБТУ, трансмиссия нового типа позволила сэкономить 750 кг массы и состояла из 150 механообработанных деталей вместо прежних 500.

Все системы обслуживания двигателя были сблокированы сверху над дизелем, образуя "второй этаж" МТО, схема которого получила наименование "двухъярусной".

Высокие показатели двигателя 5ТД потребовали использования в его конструкции ряда новых принципиальных решений и специальных материалов. Поршень для этого дизеля, например, изготовлялся с использованием жаровой накладки и проставки.

В качестве первого поршневого кольца было применено неразрезное жаровое кольцо манжетного типа. Цилиндры выполнялись стальными, хромированными.

Возможность работы двигателя с высоким давлением вспышки обеспечивалось силовой схемой двигателя с несущими стальными болтами, литым алюминиевым блоком, разгруженным от действия газовых сил, а также отсутствие газового стыка. Улучшение процесса продувки и наполнения цилиндров (а это проблема для всех 2-тактных дизелей) способствовало в определенной мере газодинамическая схема с использованием кинетической энергии выхлопных газов и эжекционного эффекта.

Струйно-вихревая система смесеобразования, при которой характер и направление топливных струй согласованы с направлением движения воздуха, обеспечивала эффективную турбулизацию топливно-воздушной смеси, что способствовало улучшению процесса тепло- и массообмена.

Специально подобранная форма камеры сгорания также позволяла улучшить процесс смесеобразования и сгорания. Крышки коренных подшипников стягивались с блок-картером стальными силовыми болтами, воспринимающих нагрузку от газовых сил, действующих на поршень.

К одному торцу блока-картера прикреплялась плита с турбиной и водяным насосом, а к противоположному торцу крепилась плита главной передачи и крышки с приводами к нагнетателю, регулятору, датчику тахометра, компрессору высокого давления и воздухораспределителю.

В январе 1957 г. первый опытный образец танкового дизеля 5ТД был подготовлен к стендовым испытаниям. По окончании стендовых испытаний 5ТД в том же году был передан на объектовые (ходовые) испытания в опытном танке "объект 430", а к маю 1958 г. прошел межведомственные Государственные испытания с хорошей оценкой.

И все же дизель 5ТД в серийное производство решили не передавать. Причиной вновь стало изменение требований военных к новым танкам, в очередной раз вызвавшее необходимость роста мощности. С учетом очень высоких технико-экономических показателей двигателя 5ТД и заложенные в нем резервы (что продемонстрировали и испытания) новую силовую установку мощностью порядка 700 л.с. решили создать на его основе.

Создания такого оригинального для Харьковского завода транспортного машиностроения двигателя потребовало изготовления значительно технологической оснастки, большого числа опытных образцов дизеля и проведение длительных многократных испытаний. Нужно учитывать при этом, что конструкторский отдел завода – впоследствии Харьковское конструкторское бюро машиностроения (ХКБД), и моторное производство создавались после войны практически заново.

Одновременно с проектированием дизеля для отработки элементов его конструкции и рабочего процесса на заводе был создан большой комплекс экспериментальных стендов и различных установок (24 единицы). Это в значительной степени помогло проверить и отработать конструкции таких узлов, как нагнетатель, турбина, топливный насос, выпускной коллектор, центрифуга, водяной и масляные насосы, блок-картер и др. К моменту сборки первого образца дизеля эти элементы были уже предварительно проверены на стендах, однако их отработка продолжалась и далее.

В 1959 г. По требованию главного конструктора нового танка (А.А.Морозова), для которого целевым назначением разрабатывался этот дизель, было признано необходимым увеличить его мощность с 426 кВт (580 л.с.) до 515 кВт (700л.с.). Форсированный вариант двигателя получил наименования 5ТДФ.

За счет увеличение частоты вращения компрессора наддува была повышена литровая мощность двигателя. Однако в результате форсирования дизеля появились новые проблемы, прежде всего по надежности узлов, агрегатов.

Конструкторы ХКБД, НИИД, ВНИИтрансмаш, технологи завода и институтов ВНИТИ и ЦНИТИ (с 1965 г.) провели огромный объем расчетных, исследовательских, конструкторских и технологических работ по достижению требуемой надежности и наработки дизеля 5ТДФ.

Наиболее трудными оказалась проблемы повышения надежности работы поршневой группы, топливной аппаратуры, турбокомпрессора. Каждое, даже незначительное улучшение давалось только в результате проведения целого комплекса конструкторских, технологических, организационных (производственных) мероприятий.

Первая партия дизелей 5ТДФ характеризовалась большой нестабильностью качества изготовления деталей и узлов. Определенная часть дизелей из выпускаемой серии (партии) нарабатывала установленную гарантийную наработку (300ч). Вместе с тем, значительная часть двигателей снималась со стендов до гарантийной наработки из-за тех или иных дефектов.

Специфика быстроходного 2-тактного дизеля заключается в более сложной системе газообмена, чем в 4-тактном, повышенном расходе воздуха, более высокой тепловой нагрузки поршневой группы. Поэтому требовались жесткость и вибростойкость конструкции, более строгое соблюдение геометрической формы ряда деталей, высокие антизадирные свойства и износостойкость цилиндров, жаростойкость и механическая прочность поршней, тщательный дозированный подвод и отвод смазки цилиндров и повышения качества трущихся поверхностей. Для учета этих специфических особенностей 2-тактных двигателей и надо было решить сложные конструкторские и технологические проблемы.

Одной из наиболее ответственных деталей, обеспечивающих четкое газораспределение и защиту уплотнительных поршневых колец от перегрева, было нарезное стальное тонкостенное жаровое кольцо манжетного типа со специальным антифрикционным покрытием. В доводке дизеля 5ТДФ проблема работоспособности этого кольца стала одной из основных. В процессе доводки длительное время происходили задиры и поломки жаровых колец из-за деформации их опорной плоскости, неоптимальная конфигурация, как самого кольца, так и корпуса поршня, неудовлетворительного хромирования колец, недостаточной смазки, неравномерной подачи топлива форсунками, скалывания окалины и отложение солей, образующихся на накладке поршня, а также из-за пылевого износа, связанного с недостаточной степенью очистки всасываемого двигателем воздуха.

Только в результате длительной и напряженной работы многих специалистов завода и научно-исследовательских и технологических институтов, по мере улучшение конфигурации поршня и жарового кольца, совершенствования технологии изготовления, регулировка элементов топливной аппаратуры, улучшение смазки, применение более эффективных антифрикционных покрытий, а также доработки системы воздухоочистки были практически устранены дефекты, связанных с работой жарового кольца.

Поломки трапециевидных поршневых колец, например, были устранены путем уменьшения осевого зазора между кольцом и канавкой поршня, улучшения материала, изменения конфигурации поперечного сечения кольца (перешли с трапециевидного на прямоугольное) и уточнения технологии изготовления колец. Поломки болтов, крепящих накладки поршней, были устранены изменением резьбы и контровки, ужесточения контроля в производстве, ограничением усилия затяжки и применением улучшенного материала болтов.

Стабильность расхода масла была достигнута за счет повышения жесткости цилиндров, уменьшения размеров вырезов на концах цилиндров, ужесточения контроля при изготовлении маслосборных колец.

Путем доводки элементов топливной аппаратуры и совершенствования газообмена было получено некоторое улучшение топливной экономичности и снижения максимального давления вспышки.

За счет повышения качества применяемой резины и упорядочения зазора между цилиндром и блоком были устранены случаи течи охлаждающей жидкости через резиновые уплотнительные кольца.

В связи с существенным увеличением передаточного числа от коленчатого вала к нагнетателю на некоторых дизелях 5ТДФ были выявлены такие дефекты, как пробуксовка и износ дисков фрикционной муфты, поломки колеса нагнетателя и выход из строя его подшипников, которые отсутствовали на дизеле 5ТД. Для их устранения пришлось провести такие мероприятия, как подбор оптимальной затяжки пакета дисков фрикционной муфты, увеличения числа дисков в пакете, устранения концентраторов напряжения в рабочем колесе нагнетателя, виброголтовка колеса, повышения демпфирующих свойств опоры, подбор более качественных подшипников. Это позволило ликвидировать дефекты, явившиеся следствием форсирования дизеля по мощности.

Повышение надежности и наработки дизеля 5ТДФ в значительной степени способствовало применения более качественных масел со специальными присадками.

На стендах ВНИИтрансмаш с участием сотрудников ХКБД и НИИД был выполнен большой объем исследований работы дизеля 5ТДФ в условиях реальной запыленности всасываемого воздуха. Они в конечном итоге завершились успешными «пылевыми» испытаниями двигателя в течении 500 часов его работы. Этим была потверждена высокая степень отработки цилиндро-поршневой группы дизеля и системы воздухоочистки.

Параллельно с доводкой самого дизеля проводилось его многократные испытания совместно с системами силового установки. При этом шло усовершенствования систем, решался вопрос их взаимоувязки и надежной работы в танке.

Главным конструктором ХКБД в решающий период доводки дизеля 5ТДФ был Л.Л.Голинец. Бывший главный конструктор А.Д.Чаромский был на пенсии, продолжал принимать участие в доводке в качестве консультанта.

Освоения серийного производства дизеля 5ТДФ в новых, специально построенных цехах завода, с новыми кадрами рабочих и ИТР, которые учились на этом двигателе, вызывало множество трудностей, потребовало значительного повышения технического уровня в оснащении производства, большого напряжения труда многих коллективов заводских служб и цехов, значительное участие специалистов других организаций.

До 1965 года двигатель 5ТДФ выпускался отдельными сериями (партиями). Каждая последующая серия включала ряд разработанных и проверенных на стендах мероприятий, устраняющие дефекты, выявленные в процессе испытания и в ходе опытной эксплуатации в армии.

Однако фактическая наработка двигателей не превышала 100 часов.

Существенный перелом в повышении надежности дизеля произошел в начале 1965 года. К этому времени в конструкцию и технологию его изготовления был внесен большой объем изменений. Внедренные в производство, эти изменения позволили повысит наработку очередной серии двигателей до 300 часов. Проведенные длительные пробеговые испытания танков с двигателями этой серии подтвердили значительно возросшую надежность дизелей: все двигателя при этих испытаниях отработали 300 часов, а часть из них (выборочно), продолжив испытания, наработала и по 400…500 часов.

В 1965 году была, наконец, выпущена установочная партия дизелей по откорректированной чертежно-технической документации и технологии для серийного производства. Всего в 1965 году было изготовлено 200 серийных двигателей. Началось наращивания выпуска, достигшая максимума в 1980 году. В сентябре 1966 года дизель 5ТДФ прошел межведомственные испытания.

Рассматривая создания дизеля 5ТДФ, следует отметить ход его технологической отработки как двигателя совершенно нового для производства завода. Практически одновременно с изготовлением опытных образцов двигателя и его конструкторской доводкой проводились его технологическая отработка и строительство новых производственных мощностей завода и комплектования их оборудованием.

По уточненным чертежам первых образцов двигателей уже в 1960 году была начата разработка проектной технологии изготовления 5ТДФ, а с 1961 года приступили к изготовлению рабочей технологической документации. Конструктивные особенности 2-тактного дизеля, применения новых материалов, высокая точность его отдельных и узлов требовали от технологии применения принципиально новых методов при обработке и даже сборки двигателя. Проектирования технологических процессов и их оснащения осуществлялось как технологическим службами завода во главе с А.И.Исаевым, В.Д.Дьяченко, В.И.Дощечкиным и другими, так и сотрудниками технологических институтов отрасли. К решению многих металлургических и материаловедческих проблем были привлечены специалисты Центрального научно-исследовательского института материалов (директор Ф.А.Куприянов).

Строительство новых цехов моторного производства Харьковского завода транспортного машиностроения велось по проекту института «Союзмашпроект» (главный инженер проекта С.И.Шпынов).

В течение 1964-1967 гг. новое дизельное производство комплектовалось тем оборудованием (особенно специальными станками – более 100 единиц), без которых практически невозможно было бы организовать серийное изготовление деталей дизеля. Это были алмазнорасточные и многошпиндельные станки для обработки блока, специальные токарные и финишные станки для обработки коленчатых валов и др. До ввода новых цехов и участков опробования и отладка технологии изготовления ряда основных деталей, а также изготовления установочных партий и первых серий двигателя были временно организованы на производственных площадках корпуса крупных тепловозных дизелей.

Ввод в эксплуатацию основных мощностей нового дизельного производства осуществлялся поочередно в период 1964-1967 гг. В новых цехах был обеспечен полный цикл производства дизелей 5ТДФ, кроме заготовительного производства, размещенного на основной площадке завода.

При формировании новых производственных мощностей большое внимание было уделено повышению уровня и организации производства. Изготовлению дизеля было организовано по поточному и групповому принципу с учетом последних достижений того периода в этой области. Использовались наиболее прогрессивные средства механизации и автоматизации обработки деталей и сборки, что обеспечивало создания комплексно-механизированного производства дизеля 5ТДФ.

В процессе формирования производства была проведена большая совместная работа технологов и конструкторов по повышению технологичности конструкции дизеля, в ходе которой технологами было выдано в ХКБД около шести тысяч предложений, значительная часть которых нашла отражения в конструкторской документации двигателя.

По техническому уровню новое дизельное производство значительно превосходило достигнутые к тому времени показатели предприятия отрасли, выпускавших аналогичную продукцию. Коэффициент оснащенности процессов производства дизеля 5ТДФ достиг высокой величины – 6,22. Только за 3 года было разработано более 10 тысяч технологических процессов, спроектировано и изготовлено более 50 тысяч наименования оснастки. К изготовлению оснастки и инструмента, в порядке оказания помощи заводу имени Малышева, были привлечены ряд предприятий Харьковского совнархоза.

В последующие годы (после 1965г.) уже в ходе серийного производства дизеля 5ТДФ, силами технологических служб завода и ЦНИТИ производились работы по дальнейшему совершенствованию технологий с целью снижения трудоемкости, повышения качества и надежности двигателя. Сотрудниками ЦНИТИ (директор Я.А.Шифрин главный инженер Б.Н.Сурнин) в течении 1967-1970 гг. было разработано более 4500 технологический предложений, обеспечивающих снижения трудоемкости более чем на 530 нормо-часов и значительное сокращение потерь от брака в ходе производства. Одновременно эти мероприятия позволили более чем в два раза сократить количество подгоночных операций и селективных соединений деталей. Результатом внедрения комплекса конструкторский и технологический мероприятий явилась более надежная и качественная работа двигателя в эксплуатации с гарантийной наработкой 300 часов. Но работы технологов завода и ЦНИТИ совместно с конструкторами ХКБД продолжались. Необходимо было повысить наработку двигателя 5ТДФ в 1,5…2,0 раза. Эта задача так же решена. 2-тактный танковый дизель 5ТДФ был доработан и освоен в производстве на Харьковском заводе транспортного машиностроения.

Весьма существенную роль в организации производства дизеля 5ТДФ сыграл директор завода О.А.Соич, а также ряд руководителей отрасли (Д.Ф.Устинов, Е.П.Шкурко, И.Ф.Дмитриев и др.), постоянно контролировали ход доработки и освоения производства дизеля, а также принимавшие непосредственное участие в решении технических и организационных проблем.

Системы автономного факельного подогрева и масловпрыска позволили впервые (в 1978 г.) обеспечить холодный пуск танкового дизеля при температурах до -20 градусов С (с 1984 г. до -25 градусов С). Позже (в 1985 г.) стало возможным с помощью системы ПВВ (подогреватель впускного воздуха) осуществлять холодный пуск четырехтактного дизеля (В-84-1) на танках Т-72, но только до температуры -20 градусов С, причем не более двадцати пусков в пределах гарантийного ресурса.

Самое главное 5ТДФ плавно перешел в новое качество в дизелях серии 6ТД (6ТД-1…6ТД-4) с диапазоном мощностей 1000-1500 л.с. и превосходящих по ряду основных параметров зарубежные аналоги.

СВЕДЕНИЯ ПО ЭКСПЛУАТАЦИИ ДВИГАТЕЛЯ

Применяемые эксплуатационные материалы

Основным, видом топлива для питания двигателя является топливо для быстроходных дизелей ГОСТ 4749-73:

При температуре окружающей среды не ниже +5°С - марки ДЛ;

При температуре окружающей среды от +5 до -30°С - марки ДЗ;

При температуре окружающей среды ниже -30°С - марки ДА.

В случае необходимости допускается при температуре окружающей среды выше +50°С применять топливо марки ДЗ.

Кроме топлива для быстроходных дизелей двигатель может работать на топливе для реактивных двигателей TC-1 ГОСТ 10227-62 или автомобильном бензине А-72 ГОСТ 2084-67, а также смесях применяемых топлив в любых пропорциях.

Для смазки двигателя применяется масло М16-ИХП-3 ТУ 001226-75. В случае отсутствия этого масла допускается применение масла МТ-16п.

При переходе с одного масла на другое остатки масла из картерной полости двигателя и масляного бака машины необходимо слить.

Смешивание применяемых масел между собой, а также применение других марок масел запрещаются. Допускается смешивание в масляной системе несливаемого остатка одной марки масла с другой, вновь заправленной.

При сливе температура масла должна быть не ниже +40°С.

Для охлаждения двигателя при температуре окружающей среды не ниже +5°С применяется чистая пресная вода без механических примесей, пропущенная через специальный фильтр, придаваемый в ЭК машины.

Для предохранения двигателя от коррозии и «акипеобразования в воду, пропущенную через фильтр, добавляют 0,15% трехкомпонентной присадки (по 0,05% каждого из компонентов).

Присадка состоит из тринатрийфосфата ГОСТ 201-58, хромпика калиевого ГОСТ 2652-71 и нитрита натрия ГОСТ 6194-69 необходимо предварительно растворить в 5-6 л воды, пропущенной через химический фильтр и подогретой до температуры 60-80°С. В случае дозаправки 2-3 л разрешается (разово) применять воду без присадки.

Засыпать антикоррозионную присадку непосредственно в систему запрещается.

При отсутствии трехкомпонентной присадки допускается применение чистого хромпика 0,5%.
При температуре окружающего воздуха ниже +50°С следует применять низкозамерзающую жидкость (антифриз) марки «40» или «65» ГОСТ 159-52. Антифриз марки «40» применяется при температуре окружающего воздуха до -35°С, при температуре ниже - 35°С - антифриз марки «65».

Двигатель заправлять топливом, маслом и охлаждающей жидкостью с соблюдением мер, предотвращающих попадание механических примесей и пыли, а в топливо и масло, кроме того, влаги.

Заправлять топливо необходимо через фильтр с шелковым полотном. Заправлять масло рекомендуется с помощью специальных маслозаправщиков. Масло, воду и низкозамерзающую жидкость заправлять через фильтр с сеткой № 0224 ГОСТ 6613-53.

Заправлять системы до уровней, предусмотренных инструкцией по эксплуатации машины.

Для полного заполнения объемов систем смазки и охлаждения необходимо после заправки на 1-2 мин запустить двигатель, после чего проверить уровни и при необходимости дозаправить системы,

В процессе эксплуатации необходимо контролировать количество охлаждающей жидкости и масла в системах двигателя и поддерживать их уровни IB заданных пределах.

Не допускать работу двигателя при наличии в баке системы смазки двигателя менее 20 л масла.

При понижении уровня охлаждающей жидкости вследствие испарения или утечек в систему охлаждения доливать соответственно воду или антифриз.

Охлаждающую жидкость и масло сливать через специальные сливные клапаны двигателя и машины (котел подогрева и масляный бак) с помощью шланга со штуцером при открытых заправочных горловинах. Для полного удаления остатков воды из системы охлаждения во избежание ее замерзания рекомендуется систему пролить 5-6 л низкозамерзающей жидкостью.

Особенности работы двигателя на различных видах топлива

Работа двигателя на различных видах топлива осуществляется механизмом управления подачей топлива, имеющим два положения установки рычага многотопливности: работа на топливе для быстроходных дизелей, топливе для реактивных двигателей, бензине (со снижением мощности) и их смесях в любых пропорциях; работа только на бензине.

Эксплуатация на других видах топлива при этом положении рычага категорически запрещается.

Установка механизма управления подачей топлива из положения «Работа на дизельном топливе» в положение «Работа на бензине» осуществляется вращением регулировочного винта рычага многотопливности по ходу часовой стрелки до упора, а из положения «Работа на бензине» в положение «Работа на дизельном топливе» - вращением регулировочного винта рычага многотопливности против хода часовой стрелки до упора.

Особенности запуска и эксплуатации двигателя при работе на бензине. Не менее чем за 2 мин до запуска двигателя необходимо включить насос БЦН машины и интенсивно прокачать топливо ручным подкачивающим насосом машины; во всех случаях независимо от температуры окружающего воздуха перед запуском производить двойной впрыск масла в цилиндры.

Бензиновый центробежный насос машины должен оставаться включенным на протяжении всего времени работы двигателя на бензине, его смесях с другими топливами и при кратковременных остановках (3-5 мин) машины.

Минимально устойчивые обороты на холостом ходу при работе двигателя на бензине составляют 1000 в минуту.

ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ

О достоинствах и недостатках данного двигателя вспоминает С. Суворов, в своей книге «Т-64».

На танках Т-64А, выпускаемых с 1975 года, было усилено и бронирование башни за счет применения корундового наполнителя.

На этих машинах также была увеличена емкость топливных баков с 1093 л до 1270 л, вследствие чего сзади на башне появился ящик для укладки ЗИП. На машинах прежних выпусков ЗИП размещался в ящиках на правой надгусеничной полке, где и установили дополнительные топливные баки, подключенные в топливную систему. При установке механиком-водителем топливораспределительного крана на любую группу баков (заднюю или переднюю) топливо вырабатывалось в первую очередь из наружных баков.

В механизме натяжения гусеницы была применена червячная пара, которая позволяла ее эксплуатацию без обслуживания в течение всего срока эксплуатации танка.

Эксплуатационные характеристики этих машины были значительно улучшены. Так, например, пробе до очередного номерного обслуживания был увеличен с 1500 и 3000 км до 2500 и 5000 км для Т01 и ТО соответственно. Для сравнения на танке Т-62 ТО1 ТО2 проводилось через 1000 и 2000 км пробега, а на танке Т-72 - через 1600-1800 и 3300-3500 км пробега соответственно. Гарантийный срок работы двигателя 5ТДФ был увеличен с 250 до 500 моточасов, гарантийный срок всей машины составил 5000 км пробега.

Но училище - это только прелюдия, основная эксплуатация началась в войсках, куда я попал после окончания училища в 1978 году. Перед самым выпуском до нас довели приказ Главкома Сухопутных войск о том, что выпускников нашего училища распределять только в те соединения, где имеются танки Т-64. Связано это было с тем, что в войсках имелись случаи массового выхода из строя танков Т-64, в частности, двигателей 5ТДФ. Причина - незнание материальной части и правил эксплуатации этих танков. Принятие на вооружение танка Т-64 было сравнимо с переходом в авиации с поршневых двигателей на реактивные - ветераны авиации помнят, как это было.

Что касается двигателя 5ТДФ, то основных причин выхода его из строя в войсках было две - перегрев и пылевой износ. Обе причины происходили по незнанию или по пренебрежению правил эксплуатации. Основной недостаток этого двигателя - не слишком рассчитан на дураков, иногда требует, чтобы делали то, что написано в инструкции по эксплуатации. В мою бытность уже командиром танковой роты один из моих командиров взводов, выпускник Челябинского танкового училища, готовившего офицеров на танки Т-72 как-то начал критиковать силовую установку танк Т-64. Не нравился ему двигатель и периодичность его обслуживания. Но когда ему был задан вопрос «А сколько раз за полгода вы на своих трех учебных танках открывали крыши МТО и заглядывали в моторно-трансмиссионное отделение?» Оказалось, что ни разу. И танки ходили, обеспечивали боевую подготовку.

И так по порядку. Перегрев двигателя происходил по нескольким причинам. Первая - механик забывал снять коврик с радиатора и затем не смотрел на приборы, но такое бывало очень редко и, как правило, зимой. Вторая, и основная - заправка охлаждающей жидкостью. По инструкции положено заливать воду (в летний период эксплуатации) с трехкомпонентной присадкой, причем вода должна заливаться через специальный сульфофильтр, которым машины ранних выпусков комплектовались все, а на новых машинах такой фильтр выдавался один на роту (10-13 танков). Выходили из строя двигатели, в основном, танков учебной группы эксплуатации, эксплуатировавшихся минимум пять дней в неделю и находящихся обычно на полигонах в полевых парках. При этом механики-водители «учебники» (так называли механиков учебных машин), как правило, трудяги и добросовестные парни, но не знавшие до тонкостей устройства двигателя, могли себе позволить иногда залить воды в систему охлаждения просто из-под крана, тем более что сульфофильтр (который один на роту) хранился обычно на зимних квартирах, где-нибудь в каптерке зампотеха роты. Результат - образование накипи в тонких каналах системы охлаждения (в районе камер сгорания), отсутствие циркуляции жидкости в самом нагреваемом месте двигателя, перегрев и выход двигателя из строя. Образование накипи усугубляло и то, что вода в Германии очень жесткая.

Один раз в соседнем подразделении был выведен двигатель по причине перегрева по вине механика-водителя. Обнаружив небольшую течь охлаждающей жидкости из радиатора, он по совету одного из «знатоков» добавить в систему горчицы купил пачку горчицы в магазине и всю ее высыпал в систему, в результате - засорение каналов и выход двигателя из строя.

Бывали еще и другие сюрпризы с системой охлаждения. Вдруг начинает выгонять охлаждающую жидкость из системы охлаждения через паровоздушный клапан (ПВК). Некоторые, не разобравшись в чем дело, пытаются завести его с буксира - результат разрушение двигателя. Таким образом мой зампотех батальона сделал мне «подарок» к Новому году, и мне пришлось менять двигатель 31 декабря. До Нового года я успел, т.к. замена двигателя на танке Т-64 процедура не очень сложная и, самое главное, не требует центровки при его установке. Больше всего времени при замене двигателя на танке Т-64, как и на всех отечественных танках, занимает процедура слива и заправки масла и охлаждающей жидкости. Если бы на наших танках вместо дюритных соединений трубопроводов стояли разъемы с клапанами, как на «Леопардах» или «Леклерках», то замена двигателя на танках Т-64 или Т-80 по времени занимала бы не больше, чем замена всего силового блока на западных танках. Так, например, в тот памятный день 31 декабря 1980 г. после слива масла и охлаждающей жидкости мы с прапорщиком Е. Соколовым «выкинули» двигатель из МТО всего за 15 минут.

Вторая причина выхода двигателей 5ТДФ из строя - это пылевой износ. Система очистки воздуха. Если своевременно не проверять уровень охлаждающей жидкости, а положено проверять перед каждым выходом машины, то может настать такой момент, когда в верхней части рубашки охлаждения жидкость будет отсутствовать, и происходит местный перегрев. При этом самое слабое место форсунка. В этом случае горят прокладки форсунки либо выходит из строя сама форсунка, затем через трещины в ней или сгоревшие прокладки газы из цилиндров пробиваются в систему охлаждения, и под их давлением жидкость выгоняется через ПВК. Все это не смертельно для двигателя и устраняется при наличии в подразделении знающего человека. На обычных рядных и V-образных двигателях в аналогичной ситуации «ведет» прокладку головки блока цилиндров, и работы в этом случае будет побольше.

Если в такой ситуации двигатель остановить и не принять никаких мер, то через некоторое время цилиндры начнут заполняться охлаждающей жидкостью, двигателя представляет собой инерционную решетку и циклонный воздухоочиститель. Воздухоочиститель согласно инструкции по эксплуатации промывается по необходимости. На танках типа Т-62 он промывался зимой через 1000 км пробега, а летом через 500 км. На танке Т-64 - по необходимости. Вот здесь-то и камень преткновения - некоторые приняли это как то, что можно его вообще не промывать. Необходимость же возникала тогда, когда в циклоны попадало масло. И если хоть в одном из 144 циклонов есть масло, то воздухоочиститель надо промывать, т.к. через этот циклон в двигатель попадает неочищенный воздух с пылью, и далее, как наждаком, стираются гильзы цилиндров и кольца поршней. Двигатель начинает терять мощность, увеличивается расход масла, а потом и вовсе перестает запускаться.

Проверить попадание масла в циклоны нетрудно - достаточно посмотреть входные отверстия циклонов на воздухоочистителе. Обычно смотрели на патрубок выброса пыли из воздухоочистителя, и если на нем обнаруживали масло, то тогда смотрели и воздухоочиститель, и если надо, то промывали. Откуда же попадало масло? Все просто: заливная горловина маслобака системы смазки двигателя расположена рядом с сеткой воздухозаборника. При дозаправке маслом обычно используется лейка, но т.к. опять же на учебных машинах лейки, как правило, отсутствовали (кто-то терял, кто-то положил на гусеничную ленту, забыл и поехал через нее и т.д.), то механики заливали масло просто из ведер, при этом масло проливалось, попадало сначала на сетку воздухозаборника, а затем и в воздухоочиститель. Даже заправляя масло через лейку, но в ветреную погоду, масло ветром забрызгивало на сетку воздухоочистителя. Поэтому со своих подчиненных я требовал при заправке масла стелить на сетку воздухозаборника коврик из ЗИПа танка, в результате чего избегал неприятностей с пылевым износом двигателя. При этом надо отметить, что условия запыленности в Германии в летнее время были самые что ни есть суровые. Так, например, во время дивизионных учений в августе 1982 года при совершении марша по лесным просекам Германии из-за висевшей пыли не было даже видно, где заканчивается ствол пушки собственного танка. Дистанцию между машинами в колонне выдерживали буквально нюхом. Когда до впередиидущего танка оставалось буквально несколько метров, то можно было различить запах его выхлопных газов и вовремя затормозить. И так 150 километров. После совершения марша всё: танки, люди и их лица, комбинезоны и сапоги были одного цвета - цвета дорожной пыли.

Дизель 6ТД

Одновременно с конструкторской и технологической доводкой дизеля 5ТДФ коллектив конструкторов ХКБД приступил к разработки следующей модели 2-тактного такового дизеля уже в 6-цилиндровом исполнении с повышенной мощностью до 735 кВт (1000 л.с.). Этот двигатель, так же, как и 5ТДФ, представлял собой дизель с горизонтально расположенными цилиндрами, встречно движущимися поршнями и прямоточной продувкой. Дизель получил наименование 6ТД.

Турбонаддув был осуществлен от компрессора, механически (рессорой) связанного с газовой турбиной, преобразующая часть тепловой энергии отработавших газов в механическую работу для привода компрессора.

Поскольку мощность, развиваемую турбиной, была недостаточно для привода компрессора, он с помощью редуктора и механизма передачи был соединён с обоими коленчатыми валами двигателя. Степень сжатия была принята равной 15.

Для получения требуемых фаз газораспределения, при которых обеспечивалась бы необходимая очистка цилиндра от отработавших газов и наполнения сжатым воздухом, было предусмотрено (как и на двигателях 5ТДФ) угловое смещение коленчатых валов в сочетании с несимметричным расположением впускных и выпускных окон цилиндров по их длине. Крутящий момент, снимаемый с коленчатых валов, составляет для впускного вала – 30%, для выпускного -70% от крутящего момента двигателя. Крутящий момент, развиваемый на впускном валу, через шестеренчатую передачу передавался на выпускной вал. Суммарный крутящий момент мог сниматься с обоих концов выпускного вала через муфту отбора мощности.

В октябре 1979 г. Двигатель 6ТД после серьезной доработки цилиндропоршневой группы, топливной аппаратуры, системы воздухоснабжения и другие элементов успешно прошел межведомственные испытания. С 1986 г. Были изготовлены первые 55 двигателей в серийном исполнении. В последующие годы серийный выпуск увеличился и достиг максимума в 1989 г.

Процент подетальной унификации 6ТД с дизелем 5ТДФ составил более 76%, а надежность работы была не ниже, чем у 5ТДФ, который серийно изготовлялся многие годы.

Работы ХКБД под руководством главного конструктора Н.К.Рязанцева по дальнейшему совершенствованию 2-тактного танкового дизеля продолжались. Дорабатывались узлы, механизмы и системы, по которым выявлялись в эксплуатации отдельные дефекты. Совершенствовалась система наддува. Проводились многочисленные стендовые испытания двигателей с введением конструктивных изменениями.

Разрабатывалась новая модификация дизеля – 6ТД-2. Мощность его составляла уже не 735кВт (1000л.с.), как у 6ТД, а 882 кВт (1200л.с.). Подетальная унификация его с дизелем 6ТД была обеспечена более чем на 90%, а с дизелем 5ТДФ – более 69%.

В отличии от двигателя 6ТД на двигателе 6ТД-2 был применен 2-ступенчатый осецентробежный компрессор системы наддува и изменения конструкции турбины, сильфона, масляного центробежного фильтра, патрубка и других узлов. Была также несколько снижена степень сжатия – с 15 до 14,5 и увеличено среднее эффективное давление с 0,98 МПа до 1,27МПа. Удельный расход топлива двигателя 6ТД-2 составил 220 г/(кВт*ч) (162 г/(л.с.*ч)) вместо 215 г/(кВт*ч) (158г/(л.с.*ч)) – для 6ТД. С точки зрения установки в танк дизеля 6ТД-2 был полностью взаимозаменяем с двигателем 6ДТ.

В 1985 г. Дизель 6ТД-2 прошел межведомственные испытания и конструкторская документация была представлена для подготовки и организации серийного производства.

В ХКБД с участием НИИД и других организаций продолжались научно-исследовательские и опытно-конструкторские работы по 2-тактному дизелю 6ТД с целью его форсирования по мощности до значения 1103 кВт (1500л.с.), 1176 кВт (1600л.с.), 1323 кВт (1800л.с.) с проведением проверок на образцах, а также создания на его базе семейство двигателей для ВГМ и народохозяйственных машин. Для ВГМ легкой и промежуточной категории по массе разрабатывались дизеля 3ТД мощностью 184…235 кВт (250-320л.с.), 4ТД мощностью 294…331 кВт (400…450л.с.). Разрабатывался также вариант дизеля 5ДН мощностью 331…367 кВт (450-500л.с.) для колесных машин. Для транспортеров тягачей и инженерных машин разрабатывался проект дизеля 6ДН мощностью 441…515 кВт (600-700л.с.).

Дизель 3ТД

Двигатели ЗТД в трехцилиндровом исполнении являются членами единого унифицированного ряда с серийными двигателями 5ТДФ, 6ТД-1 и 6ТД-2Е. В начале 60-х в Харькове создавалось семейство двигателей на базе 5ТДФ для машин легкой весовой категории (БТР, БМП и др.) и тяжелой весовой категории (танки, 5ТДФ, 6ТД).

Указанные двигатели имеют единую конструктивную схему:

Двухтактный цикл;

Горизонтальное расположение цилиндров;

Высокую компактность;

Низкую теплоотдачу;

Возможность использования при температурах окружающей

Среды от минус 50 до плюс 55 °С;

Малое снижение мощности при высоких температурах

Окружающей среды;

Многотопливность.

Кроме объективных причин в создании семейства двухтактных оппозитных дизелей 3ТД в середине 60-х годов были допущены ошибки. Идея 3-цилиндрового двигателя проверялась на базе 5-цилиндрового, в котором были заглушены два цилиндра. При этом газовоздушный тракт, агрегаты наддува не были согласованы. Естественно, была увеличенной и мощность механических потерь.

Основным препятствием для создания унифицированного семейства двигателей в 60-70-е годы было отсутствие в стране четкой программы развития двигателестроения, руководство «металось» между различными концепциями дизелей и ГТД. В 70-е годы с приходом к руководству страны Л. И. Брежнева ситуация еще более усугубилась, началось параллельное производство танков с разными двигателями – Т-72 и Т-80, которые по своим характеристикам являлись «танками-аналогами» уже производящегося Т-64. Речь про унификацию двигателей танка, БМП и БТР уже не шла.

К сожалению, такая же ситуация была и в других отраслях ВПК - одновременно шли разработки различных КБ в ракетостроении, авиастроении, при этом среди них не выбирались лучшие, а производились параллельно аналогичные изделия разных Конструкторских Бюро (КБ).

Подобная политика стала началом конца отечественной экономики, и причиной отставания в танкостроении, усилия вместо того, чтобы объединится в «единый кулак» распылялись на параллельные разработки конкурирующих КБ.

Легкие машины (ЛБМ), выпускавшиеся в 60…80-х годах прошлого столетия, имеют двигатели устаревшей конструкции, обеспечивающие удельную мощность в пределах 16-20 л.с./т. Современные машины должны иметь удельную мощность 25-28 л.с./т, что позволит увеличить их маневренность.

В 90-е, 2000-е годы актуальной стала модернизация ЛБМ – БТР-70, БТР-50, БМП-2.

В этот период проводились испытания данных машин показавшие высокие характеристики нового двигателя, но, вместе с тем на хранении и в производстве на территории Украины после распада СССР находилось большое количество двигателей УТД-20С1.

Генеральный конструктор по танкостроению Украины М.Д. Борисюк (ХКБМ) для модернизации этих машин решил использовать имеющиеся серийные двигатели - СМД-21 УТД-20 и немецкий «Deutz».

На каждое транспортное средство устанавливались свои двигатели, не имеющие унификации друг с другом, и с двигателями, уже находящимися в армии. Причина - для ремонтных заводов Министерства обороны выгодно использовать имеющиеся на складах заказчика двигатели позволяющих снизить стоимость работ.

Но такая позиция лишала работы ГП «Завод имени В.А. Малышева» и, прежде всего, агрегатный завод.

Такая позиция оказалось неоднозначной – с одной стороны экономия, с другой – потери перспективы.

Стоит отметить, что в ХКБМ по отношению к 3ТД был высказан ряд претензий (по шуму и дымности), который были приняты и устранены.

С целью снижения дымности при пуске и на переходных режимах на двигателе ЗТД установлена закрытая топливная аппаратура и существенно уменьшен расход масла. Снижение шума обеспечено за счет уменьшения максимального давления сгорания и уменьшения зазора в паре «поршень-цилиндр» на двигателях мощностью 280 и 400 л.с, а также снижения размаха крутильных колебаний

Снижение расхода масла на двигателях ЗТД достигнуто благодаря следующим факторам:

Снижения количества цилиндров;

Применения поршня с чугунным корпусом вместо алюминиевого сплава;

Увеличения удельного давления маслосъемного кольца на

Стенку цилиндра.

В результате принятых мер относительный расход масла на двигателях ЗТД приближается к расходу на двигателях народнохозяйственного назначения.

Зарубежные специалисты в области танкостроения, пытаясь создать образец танка, отвечающего современным требованиям ведения боевых действий с применением оружия массового поражения, считают, что боеспособность танка и его живучесть на поле боя во многом зависят от двигателя, которым он оснащён. В связи с этим во многих капиталистических странах, особенно в странах - участницах агрессивного блока , ведутся значительные работы по совершенствованию танковых двигателей.

В последние годы иностранные военные специалисты предъявляют к танковым двигателям повышенные требования. По их мнению, двигатель танка должен обладать не только высокой мощностью, но и надёжностью работы в любых климатических и географических условиях, иметь большой срок службы при минимальных трудозатратах на уход. Считается также, что современный танковый двигатель должен отвечать и таким требованиям, как многотопливность, лёгкий запуск, способность развивать полную мощность сразу после запуска, высокая приёмистость при разгоне и быстрая остановка при выключении, минимальный расход топлива. Все большее внимание при создании новых двигателей уделяется оптимальному соотношению их эффективности и стоимости.

В какой мере удовлетворяют этим требованиям двигатели современных танков, каковы достоинства и недостатки их, каким двигателям и при каких условиях отдать предпочтение в перспективных разработках? Ответы на эти вопросы содержатся в приведённой ниже статье Шрайера, перевод которой публикуется в сокращённом виде..

Рис. 1. Двигатель MB 838 Са-М500 западногерманского танка «Леопард».

Двигатель танка «Леопард» 1 предкамерный, имеет два нагнетателя с механическим приводом. Специально разработанная система смазки с сухим картером обеспечивает подачу масла даже при наклонах танка. Двигатель запускается легко, поскольку охлаждающую жидкость и масло можно быстро разогреть с помощью системы подогрева.

Танки М60А1, М60А1Е2 и М48АЗ оснащены дизельным двигателем AVDS-1790-2A (рис. 2), который является вариантом бензинового двигателя танка М48. Двигатель имеет два турбонагнетателя, для очистки подаваемого в цилиндры воздуха предназначены два сухих фильтра (предварительной и тонкой очистки).

Рис. 2. Двигатель AVDS-1790-2A американского танка М60А1.

Танки Мк2 и Мк1 оборудованы двигателем L60 (рис. 3). Он является модифицированным вариантом авиационного дизельного двигателя фирмы «Юнкере», созданного ещё перед второй мировой войной. Двигатель L60 меньше по ширине, но больше по высоте и развивает такую же мощность, как 12-цилиндровый двигатель, хотя его поршни испытывают более высокие нагрузки. Отсутствие клапанного механизма упрощает конструкцию двигателя L60, однако при этом необходимо иметь второй коленчатый вал. В двигателе использована система смазки с сухим картером и двухступенчатая очистка воздуха.

Рис. 3. Разрез двигателя L60 фирмы «Лейланд».

На танке АМХ-30 установлен двигатель HS110 (рис. 4), Этот двигатель снабжён нагнетателями типа «Холсет». Для очистки воздуха предназначены два фильтра с масляными ваннами. В двигателе применяется топливоподающая система типа «Бош», а в головке блока цилиндров - вихревые камеры. Коленчатый вал двигателя имеет семь коренных шеек. Система смазки с сухим картером включает один нагнетающий и два откачивающих масляных насоса. Для заводки двигателя используются два синхронно работающих стартера.

Рис. 4. Двигатель HS 110 французского танка АМХ-30.

Для опытного танка ST-B используется дизельный двигатель 10ZF типа 21WT. Каждый блок цилиндров снабжён турбонагнетателями. Двигатель создан на основе четырёхтактного двигателя, выпускавшегося во время второй мировой войны для быстроходных патрульных катеров. По своим характеристикам он не превосходит другие танковые двигатели.

Танк STRV 103В является первым, в котором используется комбинированная силовая установка, состоящая из основного поршневого двигателя К60 (рис. 5) английской фирмы «Роллс-Ройс» и вспомогательного газотурбинного двигателя типа 553 американской фирмы «Катерпилер». Оба двигателя могут работать вместе или раздельно. Газотурбинный двигатель, например, используется для запуска поршневого двигателя или включается в работу для повышения маневренности танка в бою. При работе обоих двигателей крутящий момент передаётся через механическую коробку передач, а при работе одного двигателя К60 - через гидротрансформатор. Максимальный крутящий момент при трогании с места, когда включён газотурбинный двигатель, почти в шесть раз превышает номинальное значение крутящего момента.

Рис. 5. Разрез двигателя К60 фирмы «Роллс-Ройс».

Танковые силовые установки. В основных капиталистических государствах до недавнего времени развивали только поршневые двигатели. В настоящее время положение изменилось. К числу новых разрабатываемых танковых двигателей относятся газотурбинные двигатели и дизельные варианты двигателя Венкеля. Однако ещё рано говорить, какое влияние на будущее танка окажет роторный двигатель. До сих пор остаются нерешёнными многие проблемы, например вибрация, вызываемая трением ротора о стенки корпуса. Тем не менее многие сторонники роторного двигателя (особенно в Великобритании) связывают с ним надежды на обеспечение высокой маневренности будущих танков.

Дизельные двигатели

Опытный образец двигателя МВ873 Ка (рис. 6) западногерманского танка KPz70 (МВТ70) на 30% превосходит по удельной мощности двигатели таких современных танков, как «Леопард» и АМХ-30. Однако требование иметь на танке мощный двигатель противоречит не менее жёсткому требованию уменьшения объёма силовой установки.

Рис. 6. Двигатель МВ873 Ка западногерманского танка KPz70.

Чем больше габариты силовой установки, тем больше объём корпуса танка. Хотя вес силовой установки составляет всего 4-5% веса танка, она занимает около 10% внутреннего объёма машины. Вес корпуса равен 30-40% боевого веса танка. Увеличение бронированного объёма увеличивает вес танка гораздо больше, чем возрастание веса силовой установки, поэтому при равных условиях выгоднее иметь более тяжёлый двигатель, чем двигатель, занимающий больший объём. По габаритной мощности двигатель танка KPz70 почти вдвое превосходит показатели двигателей танков «Леопард» и АМХ-30. Двигатель танка KPz70 на 10% тяжелее двигателя танка «Леопард» 1 и почти на 30% тяжелее двигателя танка АМХ-30. Однако его вес на единицу мощности, равный 1,29 кг/л. с., почти на 40% выше, чем у двигателя танка «Леопард», и на 32% выше, чем у двигателя танка АМХ-30. Это достигнуто главным образом благодаря увеличению числа оборотов двигателя и применению наддува с помощью двух турбокомпрессоров, использующих энергию выхлопных газов, с последующим охлаждением подаваемого в цилиндры воздуха. Только за счёт турбонаддува мощность двигателя МВ873 Ка возросла на 45% по сравнению с мощностью двигателя МВ838 Са-М500, имеющего механический нагнетатель.

Особые проблемы возникают в связи с необходимостью обеспечить работоспособность танковых двигателей в диапазоне температур от - 45°С до + 50°С. Низкие температуры ухудшают запуск двигателя, а повышающаяся при падении температуры вязкость масла не только затрудняет смазку подшипников, но и увеличивает внутреннее трение в двигателе. При температуре - 20°С сопротивление вращению коленчатого вала в три-четыре раза выше, чем при температуре +15°С. Температура, необходимая для самовоспламенения горючей смеси, достигается только при давлении 30-40 кг/кв. см в конце такта сжатия и одновременно при 100-150 оборотах коленчатого вала в минуту. Запуск затрудняется вследствие повышения вязкости дизельного топлива при низких температурах (при - 20°С его вязкость почти в 10 раз больше, чем при +15°С), поскольку испаряемость охлаждённого топлива снижается и оно попадает в камеру сгорания, будучи недостаточно распылённым для образования хорошей рабочей смеси и её воспламенения. Наличие подогревателя охлаждающей жидкости и масла или воспламенительного устройства для запуска сжатым воздухом увеличивает объём силовой установки и её стоимость.

Требование обеспечить эффективную работу двигателя в любых условиях выдвигает проблемы, связанные с охлаждением при высоких температурах.

Выбор типа системы охлаждения двигателя представляет собой трудную задачу. Американские и японские специалисты отдают предпочтение системе воздушного охлаждения, несмотря на присущие ей недостатки. Западноевропейские специалисты считают более выгодной систему жидкостного охлаждения из-за её способности интенсивнее отводить тепло от нагретых частей двигателя. Стремление получить более высокую мощность за счёт наддува и повышения степени сжатия вызывает проблемы, связанные с напряжённостью условий работы некоторых деталей двигателей и частично с возрастанием объёма силовой установки. От дизельного двигателя должно отводиться 25 - 30% тепла, выделяемого в камере сгорания. Поверхность ребёр в двигателях воздушного охлаждения обычно в 12-20 раз превышает поверхность камеры сгорания, поэтому конструкцию их необходимо совершенствовать. Система жидкостного охлаждения позволяет избежать перегрева деталей двигателя, однако габариты вентилятора этой системы могут оказаться больше, чем у двигателей воздушного охлаждения.

Снижение вязкости масла вследствие повышения температуры ведёт к большому износу двигателя, уменьшая ресурс его работы. Во Франции был предложен метод поддержания нормальной рабочей температуры двигателя при температуре окружающего воздуха до +60°С. Скорость вращения вентилятора системы охлаждения двигателя танка АМХ-30 может постепенно увеличиваться в соответствии с повышением температуры. Вентилятор приводится в движение посредством гидромуфты, управляемой термостатом.

Для эффективной и надёжной работы двигателя в различных климатических и погодных условиях требуется хорошая очистка воздуха. Чтобы износ трущихся поверхностей поршня и цилиндра был в допустимых пределах, содержание пыли в воздухе, поступающем в двигатель, не должно превышать 0,001 г/куб. м. Для оценки сложности задачи, стоящей перед разработчиками воздухоочистителей, достаточно сказать, что двигатель западногерманского танка KPz70 при работе на неполную мощность (60% максимальной) потребляет в час около 3500 куб. м воздуха. Важную роль для очистки воздуха играет конструкция воздухоочистителя и его месторасположение. Например, на зимних испытаниях танка «Леопард» было обнаружено, что воздухоочистители быстро забивались льдом. Установка дополнительных экранов для прикрытия верхней ветви гусеницы в определённой мере устранила этот недостаток и в то же время улучшила защиту танка от огня противника.

Танковая силовая установка, оснащённая высокооборотным дизельным двигателем, может иметь гарантийный срок службы 15-20 тыс. км. Межремонтный срок службы двигателей западногерманских военных машин составляет около 10 тыс. км. Запуск двигателей возможен при температуре ниже - 18°С без вспомогательных устройств (например, танка «Леопард»). Двигатели могут надёжно и без перерыва работать на полной мощности в тяжёлых климатических условиях.

Наиболее сложной проблемой при создании двигателя является обеспечение высокой его приёмистости. Более высокая приёмистость двигателя способствует уменьшению уязвимости танка на поле боя, она становится критерием надёжности его конструкции. Танк, движущийся под прямым углом к линии огня танка противника, может избежать поражения за счёт быстрого перемещения в момент начала по нему стрельбы. Но это явление на поле боя имеет решающее значение не на всех дальностях. Если за время полёта снаряда танк сможет переместиться более чем на половину собственной длины, то он уклонится от снаряда, выпущенного из орудия неприятельского танка, оснащённого автоматическим вычислителем упреждения. Однако для этого танку требуется очень большое ускорение, особенно если стрельба по нему ведётся подкалиберными снарядами (рис. 7). Чтобы на удалении 2000 м уклониться от 105-мм подкалиберного снаряда с отделяющимся поддоном, танк длиной 6,8 м должен двигаться с ускорением 3,25 м/сек2. Если взять для примера французский 105-мм кумулятивный снаряд, то ускорение танка, необходимое для уклонения от него, должно быть не менее 1,15 м/сек2.


Рис. 7. Возможность уклонения танка длиной 6,8 м при стрельбе по нему подкалиберными (ПК), кумулятивными (К), бронебойно-фугасными с пластичным ВВ (Б) и осколочно-фугасными (ОФ) снарядами.

Большинство современных танков теоретически могут избежать поражения кумулятивными снарядами, но они едва ли способны уклониться от подкалиберных снарядов. В настоящее время трудно обеспечить высокую маневренность танков. Приемистость двигателя станет играть ещё более важную роль в будущем, когда установят автоматические вычислители в системах управления огнём.

Высокая приёмистость двигателя предполагает увеличение среднего эффективного давления в камере сгорания за счёт применения приводных или турбокомпрессорных нагнетателей. Каждый тип системы наддува двигателя танка в настоящее время является предметом горячих дискуссий. Представляет интерес система трубонаддува с охлаждением воздуха, поскольку механический наддув не обеспечивает среднее эффективное давление более 9,85 кг/см Важно учесть при этом, что турбонагнетатель имеет малую инерционность. Необходима согласованность в работе всей системы: двигатель - нагнетатель - гидродинамический преобразователь - коробка передач. Усовершенствование этой системы позволит танку достигать максимальной скорости за минимальное время.

Мощность поршневого двигателя определяется числом оборотов коленчатого вала, литражом и средним давлением в камере сгорания. Иногда кажется, что наиболее эффективный путь - увеличение числа оборотов коленчатого вала. Однако это в свою очередь увеличит скорость движения поршней. Например, скорость движения поршня двигателя японского танка ST-B при максимальных оборотах достигает в среднем 11 м/сек, а поршня двигателя танка М60А1 - 11,7 м/сек. Этот показатель выше у двигателей жидкостного охлаждения: у двигателя танка АМХ-30 - около 11,8 м/сек, танка «Леопард» - 12,8 м/сек и западногерманского KPz70 - 13,4 м/сек. При более высоких скоростях поршни трудно смазывать. Современный уровень развития систем смазки позволяет иметь скорость движения поршня около 15 м/сек. В ближайшем будущем не ожидается появление системы смазки, обеспечивающей скорость движения поршня свыше 16 м/сек.

Увеличение числа оборотов двигателя отрицательно влияет на процесс сгорания топлива. Для самовоспламенения топлива необходима температура сжатого воздуха по крайней мере 500-600°С. Несмотря на усовершенствования в системе очистки цилиндров, до последнего времени не удается избежать частичного распада молекул топлива на углеродсодержащие составные части, которые имеют малую скорость сгорания и, кроме того, удлиняют процесс сгорания горючей смеси. В результате увеличения числа оборотов сокращается время реакции, происходит неполное сгорание, ухудшается наполнение камер сгорания топливом, снижается мощность двигателя и увеличивается расход топлива.

Увеличение эффективного давления в камере сгорания - сложная задача. На современном уровне двигателестроения за счёт увеличения давления в камере сгорания можно повысить мощность двигателя по крайней мере вдвое, используя многоступенчатый турбокомпрессор высокого давления с промежуточным охлаждением воздуха. Однако в камере сгорания при давлении воздуха 4-4,6 ат ухудшается процесс горения вследствие слишком большой разницы в скоростях движения молекул топлива и воздуха.

Второй метод повышения мощности двигателя заключается в применении разработанных американской фирмой «Континенталь» двигателей с переменной степенью сжатия. Такие двигатели имеют поршни переменной геометрии, что позволяет изменять степень сжатия горючей смеси от 22 до 10. Мощность двигателя этого типа можно было бы увеличить на 40% и более без существенного повышения напряжений в конструкции. Но, несмотря на это, уже почти достигнут предел мощности дизельного двигателя, дальнейшее повышение мощности возможно только за счёт сокращения срока его службы или усложнения конструкции, что приведёт к увеличению стоимости. Для перспективных танков весом 32-50 т необходима удельная мощность в пределах 30-35 л.с./т.

Газотурбинные двигатели (ГТД)

В качестве силовой установки для танка может применяться только двух- или трёхвальный ГТД, оснащённый теплообменником и промежуточным холодильником. Такой двигатель имеет удовлетворительные рабочие и экономические характеристики. Современный ГТД мощностью 2000 л. с. вместе с теплообменником занимает объём, почти в два раза меньший, чем дизельный двигатель.

ГТД наилучшим образом удовлетворяет требованию лёгкого запуска и немедленной работы с полной нагрузкой. По сравнению с дизельным двигателем он имеет небольшое число вращающихся деталей и подшипников, поэтому вязкость смазочных масел влияет на его работу меньше. При низких температурах холодный запуск ГТД практически зависит только от ёмкости аккумулятора, такой двигатель может работать с полной нагрузкой с момента запуска.

ГТД лучше любого другого двигателя удовлетворяет требованию многотопливности - он может работать на любом топливе с октановым числом около 100. Однако турбина и выхлопная система двигателя подвергаются сильной коррозии при использовании топлива, содержащего ванадий. Крутящий момент простой двухвальной турбины изменяется примерно в два раза. Вес и объём коробки передач можно несколько уменьшить, но надобность в гидротрансформаторе остаётся. Отрицательные качества ГТД проявляются при работе на режиме частичной нагрузки. Поскольку силовая установка большую часть времени работает с неполной нагрузкой (около 45%- с частичной нагрузкой, 35%- на холостом ходу и лишь около 20%- на полной мощности), она должна быть достаточно эффективной на разных режимах, но в этом отношении газотурбинный двигатель уступает дизельному.

Для обеспечения возможности торможения газотурбинным двигателем необходимо соединить два его вала. Это делается с помощью редуктора. Хорошая тормозная способность достигается путём продувки воздуха, нагнетаемого компрессором, а также потоком газа, движущимся в направлении, противоположном вращению лопастей турбины. Однако это делает конструкцию ГТД дорогой. Более простым решением является установка на танке гидродинамических тормозов, хотя для этого требуется система охлаждения.

При использовании ГТД можно уменьшить шум в танке. Более сложной проблемой, чем уменьшение высокочастотного шума работающей турбины, является борьба с шумом, вызванным потоком воздуха на входе в двигатель. В то же время уменьшить шум работающей турбины значительно труднее, чем снизить уровень шума дизельного двигателя путём установки глушителей.

За последние годы достигнуты успехи в повышении экономичности ГТД, хотя удельный расход топлива у них больше, чем у дизельных двигателей. Эффективные теплообменники позволяют снизить расход топлива, но не могут уменьшить относительно высокий расход при работе на малой мощности.

Гораздо серьёзнее является проблема уменьшения расхода воздуха. Газотурбинному двигателю воздух необходим для сгорания топлива и для отведения избытка тепла. Дизельный двигатель при полной нагрузке потребляет от 20 до 30 кг воздуха для сжигания 1 кг топлива, не считая воздуха, необходимого для охлаждения. Весь воздух, требуемый для ГТД, должен пройти через турбину, следовательно, он должен быть очищен. ГТД требует очищенного воздуха в три-четыре раза больше, чем дизельный двигатель.

Поскольку разрежение на входе в газотурбинный двигатель составляет 176 - 226 мм водяного столба, то есть в три-четыре раза меньше, чем у поршневого двигателя, использование воздухоочистителей с большим сопротивлением затруднено. Вследствие этого возникает проблема обеспечения движения танков при форсировании водных преград.

Высокая приёмистость в одинаковой степени обеспечивается как газотурбинным, так и дизельным двигателем. Приемистость дизельного двигателя может быть выше. Если бы рабочее колесо турбины ГТД было очень лёгким и способным воспринять большие нагрузки, вызванные высоким давлением газов, то турбина быстро набирала бы скорость от холостых оборотов до максимальной.

Возникает вопрос: если новые газотурбинные двигатели по своим эксплуатационным и механическим качествам не уступают дизельным двигателям или даже превосходят их, то почему они не получили широкого распространения в танковых конструкциях? Газотурбинные двигатели не устанавливались на танках (кроме шведского танка STRV 103, выпущенного в 1967 году) из-за недостаточной их эффективности и высокой стоимости.

У новых газотурбинных двигателей КПД составляет около 25% Для его увеличения необходимо снизить потери давления, повысить эффективность работы камеры сгорания, компрессора и турбины, увеличить допустимую рабочую температуру турбины, использовать более эффективный и лёгкий теплообменник.

Увеличение КПД многоступенчатого компрессора требует больших затрат. Температуру в камере сгорания также нельзя существенно повысить, поскольку она ограничена тепловыми напряжениями материала, из которого изготовлена турбина. Напряжения в материале в значительной степени зависят от используемого типа топлива, в последнем не допускается присутствие ванадия и серы.

Сейчас имеются ГТД, работающие при температурах от 850 до 920°С, гарантийный срок их службы составляет по крайней мере 9000 час. Газотурбинный двигатель AGT-1500 фирмы «Лайкоминг» работает, например, при температуре на входе в турбину 1193° С. Для достижения максимального срока службы газотурбинных двигателей температура в их камере сгорания не должна превышать 900° С.

Комбинированные силовые установки (например, на шведском танке STRV 103В) сочетают в себе лучшие качества дизельного и газотурбинного двигателей. Дизельный двигатель, обладающий хорошей характеристикой при неполной нагрузке, используется, как правило, при движении в обычных условиях, а газотурбинный двигатель, имеющий высокие характеристики крутящего момента, включается при движении по труднопроходимой местности, гарантируя надёжную работу в условиях холодной погоды и т. п.

С точки зрения расхода топлива комбинированная установка является экономичной. В ближайшем будущем можно получить удельную мощность комбинированной силовой установки 30 л. с./т и выше. Однако в настоящее время уменьшение веса и размеров комбинированной силовой установки представляет серьёзную проблему. Дополнительными трудностями являются высокая стоимость изготовления привода к газотурбинному двигателю, сложность системы управления данной установкой и большая нагрузка на подшипники. Кроме того, имеются затруднения в снабжении запасными частями и подготовке специалистов.

Характеристики некоторых танковых двигателей рассмотренных типов приведены в таблице.

Тактико-технические характеристики двигателей зарубежных армии

Примечания: коленчатый вал - 2400 об/мин; 2 с устройством охлаждения воздуха; 3 с турбонагнетателем; < при 1950 об/мин на топливе DF-2; 1 при 1400 об/мин на топливе F46-185; s примерно при 2100 об/мин.

Двигатель – важнейшая часть любой машины, в т.ч. танка. Без двигателя, скажем, когда кончилось горючее, танк превращается в неподвижную огневую точку. Боевая ценность такой единицы резко снижается. Ведь подвижность танка – одно из важнейших боевых свойств грозной машины. Статью, посвящённую двигателям танков, пришлось разделить на две части. Первая часть посвящена карбюраторным двигателям и газовым турбинам. Во второй расскажу о танковых дизелях.
1.Карбюраторные двигатели.
Первым советским танковым двигателем стал мотор от грузовичка АМО, т.е лицензионный мотор от итальянского грузовика Фиат, выпускавшегося на автозаводе, который ныне носит название ЗИЛ. Его ставили не только на первые танки КС, но и на крупносерийный танк МС-1 в несколько модернизированном виде (первоначальную мощность в 34 л.с. довели до 40 «лошадок»), а также на бронеавтомобиль БА-27. Этот карбюраторный движок имел одну особенность – воздушное охлаждение. Такой способ охлаждения применяется редко, хотя он и имеет ряд преимуществ: такой двигатель проще, т.к. не имеет сложной системы водяного охлаждения, однако, он менее надёжен, особенно в жаркую погоду. Впоследствии, после модернизации на танк МС-1 (менее известный под обозначением Т-18), ставили автомобильный двигатель от М-1.
Вторым двигателем, который стоит упомянуть был М-6. Это вариант авиационного двигателя Испано-Сюиза 8FB водяного охлаждения. Он применялся на первом советском среднем танке Т-24, а также на опытном танке Гротте. Танк Т-24 был выпущен в количестве 26 экземпляров, был не очень удачным и не оставил заметного следа в советском танкостроении. Известен он только потому, что это первый советский средний танк. Более известен танк Гротте, хотя он и был построен в одном экземпляре, прежде всего из-за того, что в нём было применено много новшеств. На танк планировалось установить двигатель конструкции самого Гротте, но он не был ещё достроен. Пришлось временно установить то, что было под рукой. Аккурат, это был М-6. Двигатель, увы, не умещался в моторном отсеке и головки блоков цилиндров высовывались наружу. Этот танк имел ряд оригинальных технических решений, однако оказался непомерно дорогим, а также сложным в производстве. В массовое производство вместо него запустили танки БТ. Двигатель М-6 в советском танкостроении больше не применялся, да и в советской авиации имел довольно ограниченное применение. М-6 имел V-образную конструкцию и 8 цилиндров. На танках он был отрегулирован на максимальную мощность до 250 л.с., хотя на самолётах развивал до 300 л. с.
На рубеже 30 х годов, в СССР стала бурно развиваться промышленность, в частности танкостроение. По моде того времени в СССР стали выпускать «танкетки» - сверхлёгкие танки, оснащённые пулемётом. Первым образцом такой танкетки стала машина, выпущенная английской фирмой «Карден – Ллойд». Она имела ряд положительных качеств: простота, малая заметность, сносная проходимость, а главное невысокая стоимость. Немало было и недостатков. Малая боевая ценность, низкая стойкость тонкой брони, ненадёжность, слабое вооружение. Наши военные закупили двадцать образцов и подобную танкетку стали выпускать и у нас, хотя она претерпела ряд крупных изменений. В частности, лишилась башни. Она имела обозначение Т-27. Танкетка имела слабую броню и невысокую боевую ценность, однако, относительно успешно применялась против… басмачей. Двигатель в 40 л. с. и трансмиссия у неё, были позаимствованы у грузовика ГАЗ-АА, впоследствии – знаменитой полуторки, производимой по фордовской лицензии. Кстати, Нижний Новгород переименовали в Горький лишь в конце 1932 г, а машины начали выпускать в январе того же года, и сначала назывались они НАЗ! Карбюраторный четырёхцилиндровый двигатель от полуторки был очень неприхотлив, имел рабочий объём 3,28 л и очень маленькую степень сжатия 4,25: 1, что позволяло полуторкам в очень жаркую погоду работать на… керосине! С этим же движком выпускали и более поздние плавающие танкетки Т-37А и Т-38. Позже, когда на ГАЗе стали выпускать знаменитые Эмки М-1, с форсированным на четверть, до 50 л.с. вариантом двигателя, этот движок стали ставить на плавающие танкетки Т-38. В тридцатых годах у нас было около двух десятков вариантов новых лёгких танков, в том числе маленьких танкеток, многие из которых не были даже построены. Порой на них применялись самые экзотические моторы. Так, не пошедшая в серию, лёгкая танкетка ППГ (подвижное пулемётное гнездо) имела мотоциклетный двигатель мощностью в 16 л.с. Кстати, это последняя танкетка, созданная в СССР. Испытывали её в 1940г, уже после завершения войны с Финляндией.
Самым распространённым предвоенным танком у нас был Т-26. Этот довольно удачный лёгкий танк сопровождения пехоты был закуплен в Англии в 1930г. Там он носил обозначение МК. Е шеститонный фирмы Виккерс-Армстронг. Как правило, закупленные на Западе машины при производстве в СССР проходили ту или иную доработку. Неожиданно оказалось, что Польша, которую мы числили в наиболее вероятных противниках, закупила тот же танк и готовится к его производству. Пришлось срочно налаживать производство нового танка и у нас без особых доработок. Однако двигатель нового танка и без доработок поначалу оказался слишком сложным для изготовления в нашей стране. В это трудно поверить, но брак при производстве нового танка по двигателям сначала достигал 65 процентов! Постепенно производство наладили, количество брака резко уменьшилось. Впоследствии, из-за значительного роста массы танка, мощность двигателя оказалась недостаточной. В результате модернизации удалось поднять её с 90 до 95 л. с., что было явно маловато. Существовали планы по замене двигателя на более мощный, но кончилось тем, что создали новый танк! О нём рассказывается в статье «Нелёгкая судьба лёгкого танка». Двигатель Т-26 был рядным, восьмицилиндровым, имел рабочий объём 6,6 л, но самое интересное, имел воздушное охлаждение. В целом мотор был относительно удачным, как и весь танк, но больше нигде не применялся и поэтому его след в истории нашей техники довольно неприметен.
Другое дело двигатель М-5, который ставили на танки серии БТ-2 и БТ-5. Это вариант мощного (по тем временам) авиационного двигателя «Либерти». Пожалуй, этот американский двигатель был самым лучшим авиадвигателем Первой Мировой войны. Интересна история его создания. Американцы долго не вступали в войну, надеясь отсидеться за широкой гладью океана. Хотя сочувствовали странам Антанты и помогали, чем могли. Грянула Февральская революция в России и важнейший союзник стал ненадёжен. В апреле 1917г американцы, наконец, вступили в Войну. Говорят, что они узнали, будто немцы пытались замутить революцию в Мексике, но, скорее всего, не обошлось без происков англичан. Соединённые Штаты тогда ещё считались отнюдь не главным, а второстепенным периферийным, хотя и перспективным быстрорастущим государством. Американцы не думали, что придётся воевать. В ту пору у них не было авиадвигателей достаточной мощности, да и по авиации и по некоторым другим видам военной техники они значительно отставали от больших европейских государств. Пришлось ударными темпами развивать оборонную промышленность. Кстати в ту пору в СаСШ, так раньше у нас называли США, был построен опытный танк с, паровым двигателем! Двигатель «Либерти» был создан в кратчайшие сроки. Почти сразу после вступления СаСШ в войну. Конструкторов, его создававших, держали в гостинице… на казарменном положении. Когда Кристи создавал свои танки, война давно уже кончилась, но удачный двигатель пришёлся впору.
Танк Кристи начали выпускать у нас под маркой БТ-2, позже появились варианты БТ-5 и БТ-7. На танки из соображений экономии ставили отнюдь не новые движки, а двигатели, отработавшие в авиации установленный срок и прошедшие капремонт. В авиации основным потребителем этих двигателей был первый советский самолет, выпускавшийся у нас большой серией. Это Р-1, представлявший собой лицензионный английский DH-9. Один из лучших самолётов Первой Мировой войны к тому времени уже изрядно устарел и у нас заменялся на Р-5. Ставили этот двигатель и на другие самолёты. Двигатель «Либерти» был двенадцатицилиндровым V-образным. У нас его содрали с трофейного образца, ещё в 1923г. Особенностью этого двигателя была система зажигания по автомобильному типу без магнето. Это потребовало применения двух свечей на цилиндр.
Тогда же в Германии мы приобрели лицензию на более мощный и высотный двигатель БМВ-6. Под маркой М-17 у нас развернулось его массовое производство. V- образный 12 цилиндровый двигатель в танковом варианте развивал мощность до 500 л.с. и имел рабочий объём 46, 8 л. его ставили не только на БТ-7, но и на более тяжёлые средний танк Т-28 и тяжёлый танк Т-35. Мало того из-за нехватки дизелей В-2, его иногда ставили и на новые танки Т-34 и КВ. На танке БТ-7 с этим двигателем удельная мощность достигала рекордного и ныне показателя свыше 35 л.с. на т. Именно благодаря использованию этого двигателя танки БТ показывали чудеса подвижности. Всего было произведено 27,5 тыс. этих удачных двигателей. Двигатель М-17 оказался самым мощным карбюраторным двигателем, применяемым когда-либо на наших танках.
О двигателе ГАЗ-202 уже шла речь в рассказе «Ратник танковой рати». Его, и его модификацию ГАЗ-203 ставили на лёгкие танки Т-40, Т-60, Т-70, Т-80 и самоходки Су-76 и СУ-76М., причём на последних машинах использовались спаренная установка из двух двигателей, т.к. подходящего двигателя соответствующей мощности тогда не было. Шестицилиндровый двигатель имел рабочий объём 3,48л. Причём прототип этого двигателя Додж д5 имел рабочий объём 3,56л. «Лишние» кубические сантиметры исчезли при переводе дюймовых мер движка в метрические. Мощность двигателя в разных вариантах была от70 до 85 л.с. . На, выпущенном после войны автомобиле ЗИМ ГАЗ-12, использовался вариант того же двигателя, форсированный до 90л.с. На грузовике ГАЗ-51А, а позднее ГАЗ-52 этот двигатель дожил почти до наших дней. На базе того же двигателя был создан четырёхцилиндровый вариант с рабочим объёмом 2,12 литра, который использовался на автомобилях Победа М-20 и ГАЗ-69. Как ни странно, этому маломощному двигателю нашлось применение и на бронетанковой технике, а именно на лёгкой авиадесантной АСУ-57, но это было уже после Войны. В дальнейшем карбюраторные двигатели на советских танках не использовались, хотя на бронетранспортёрах применялись ещё довольно долго.
2.Газовые турбины.
Газовые турбины в качестве двигателей самолётов появились во Второй Мировой войне, а для вертолётов стали применяться в середине пятидесятых. Первый газотурбинный вертолёт МИ-6 появился у нас в конце 50х годов (Его испытания начались 5 июля 1957г). Позднее, на рубеже 60-х появились новые газотурбинные вертолёты МИ-2, МИ-8 и КА-25. Газовая турбина прочно заняла место главного вертолётного двигателя, поршневые движки остались только на самых маленьких вертолётах. Пытались применить её и на других видах техники. Появились они на судах, небольшой серией у нас был выпущен железнодорожный газотурбовоз. Не обошла эта мода и танки. Первый газотурбинный танк Т 96 испытывался в США ещё в 1954 году. Первый газотурбинный танк - объект 278 в СССР стал строиться ещё в 1957 году, на базе серийного Т-10, но так и не был достроен. Аналогичный ему объект 277 с дизельным двигателем был построен, испытывался, но в серию не пошёл. Недалёкий Хрущёв считал, что в эру ракет танки себя изжили. Однако конструкторы танков в газовой турбине видели перспективный двигатель для танков. Опытные танки с газотурбинным двигателями появились сразу в нескольких КБ. Ещё в 1963г в Харькове Морозов поставил на новый танк Т-64 газотурбинный двигатель ГТД-3ТЛ мощностью 700 л.с. Танк получил обозначение Т-64Т. На Урале в КБ нижнетагильского завода в 1964г был построен опытный танк объект 167Т с газотурбинным двигателем ГТД - 3Л. По моде тех времён был построен и т. н. ракетный танк объект 288 с двумя вертолётными двигателями ГТД - 350. В качестве основного вооружения на ракетных танках применяются ПТУРСы. Было построено и испытывалось несколько образцов ракетных танков. Такое оружие считалось перспективнымю Увы, такие танки не обладали достаточной эффективностью. На танк с газотурбинными двигателями ПТУРСы даже не поставили. Единственным ракетным танком стал ИТ-1, созданный на базе Т-62, но тираж составил 104 штук! Для наших машин цифра смешная. Танки с газотурбинными двигателями проходившие в нашей стране испытания, увы, оказались недостаточно надёжными.
Тем временем в Швеции ещё в 1961 году был создан танк, который резко отличался от всех остальных танков в мире. Во - первых он был безбашенным, т.е. не имеющим башни (!), во-вторых имел гидравлическую подвеску – редкость для танков, имел два двигателя, что тоже редкость, но один двигатель был обычный дизель, а второй газовая турбина! Но, самое необычное, чудной танк пошёл в серию! Более известен поздний вариант этого танка STRV – 103B, имевший более мощный вариант турбины в 490 л.с., основной дизель был в два раза слабее 240 л.с. Увы! Новый танк не стал законодателем танковой моды. Аналогичных машин нигде в мире больше не строили.
В рассказе «Самый противоречивый танк» мы уже писали про очень ненадёжный и капризный двигатель танка Т – 64, из-за которого возникли проблемы после принятия его на вооружение. Из-за этого у нас были созданы два танка с более надёжными двигателями. На Урале построили дизельный Т-72, а в Ленинграде создали газотурбинный Т-80. Последний танк стал первым в мире серийным танком с единым газотурбинным двигателем. Он был создан чуть позже в 1976г,а в 1980 г в США был появился танк «Абрамс» с газотурбинным двигателем. Сегодня только эти два танка имеют газотурбинные двигатели, все остальные- дизельные, обычно многотопливные. Если газотурбинные танки ныне находятся на вооружении 9 стран, то дизельные в 111! Газовая турбина имеет некоторые преимущества перед дизельным двигателем. Прежде всего, это запуск в сильный мороз. Для дизельных танков это представляет определённую проблему. Те, кто служил в танковых войсках, не любят вспоминать об этом. Когда мороз больше 30, боксы не отапливаются, нет горячей воды, нет тягачей и других танков с работающими двигателями, проблема становится почти неразрешимой. Газовая турбина запускается на морозе без больших проблем. Причём при работе на морозе её мощность выше, чем в жару. Газовая турбина гораздо компактнее дизеля. Её можно приспособить на разные виды жидкого топлива, но и дизельные танки стали нынче многотопливными. Еще преимущество - на Т-80 двигатель меняется очень быстро и без проблем. Газовая турбина долговечнее дизеля. Однако все эти преимущества меркнут по сравнении с недостатками. Во-первых, газовая турбина значительно дороже дизеля. В конце семидесятых годов газотурбинный двигатель танка Т-80 стоил 104тыс. руб. (тех полноценных советских рублей!), а танковый дизель В-46 всего 9,6 тыс. руб. Разница почти в одиннадцать раз! Во-вторых её труднее ремонтировать, чем дизель. Однако самым главным препятствием к широкому применению газовых турбин на танках стала её чувствительность к чистоте воздуха. Для газовых турбин, которые потребляют воздуха в несколько раз больше, чем дизели, даже незначительное содержание в нём пыли губительно, и приводит к их быстрому выходу из строя, если не применять специальные методы очистки. Для вертолётов эта проблема проще. Двигатели у них расположены высоко, да и у земли они работают недолго - на взлёте и при посадке. Однако, на фотографиях Ми-8 (ему скоро стукнет 50 лет) нетрудно заметить ПЗУ – пылезащитные устройства на двигателях. Возможно, газовые турбины найдут на танках более широкое применение в будущем, а сейчас главным танковым двигателем остаётся дизель, о котором мы расскажем в следующей статье.

двигатель внутреннего сгорания, предназначенный для обеспечения движения танка . Танковые двигатели применяются также на самоходных артиллерийских установках, боевых машинах пехоты, бронетранспортерах. На танках 1-й мировой войны использовались поршневые карбюраторные двигатели автомобильного типа мощностью до 77 кВт (около 105 л. с.), иногда применялась их спаренная установка. Такие танковые двигатели обеспечивали ср. скорость по пересечённой местности 5 -13 км/ч. В начале 2-й мировой войны на танках Великобритании, США, Франции, Германии устанавливались карбюраторные двигатели мощностью 80-440 кВт (- 110-600 л. с.). Удельная мощность танков с этими двигателями достигала 11 - 12,9 кВт/т (15 -17,5 л. с./т), что обеспечивало ср. скорость 15-20 км/ч.
В СССР ещё в 1932 группа конструкторов - Я.Е. Вихман, И.Я. Трашутин и др.- приступила к разработке дизеля для танка.Через год 12-цилиндровый дизельный танковый двигатель БД-2 мощностью 293 кВт (около 400 л.с.) испытывался на танке БТ-5. В результате всесторонних испытании и дальнейшего усовершенствования, проведённых Т.П. Чупахиным, М.П. Поддубным, А.Д. Чаромским и др., двигатель в 1939 был принят для серийного произ-ва под индексом В-2 и положил начало семейству сов. танк, дизелей. По сравнению с карбюраторным новый танковый двигатель расходовал топлива на 20-30% меньше, что позволяло увеличить запас хода и снизить возможность возникновения пожара в боевой обстановке. Двигатель В-2 устанавливался на ср. танках Т-34, а В-2К - на тяж. танках КВ. В течение всей Великой Отечеств, войны танковые двигатели В-2 успешно применялись на сов. танках и самоходных арт. установках. За рубежом в ходе 2-й мировой войны в основном применялись карбюраторные Т. д. с воздушным и жидкостным охлаждением. На некоторых амер. и англ, танках устанавливались спаренные дизели автомобильного типа; танки нем.-фаш. армии имели карбюраторные двигатели.
В конце 70-х гг. развитие танковых двигателей в армиях передовых в экономич. отношении гос-в характеризовалось практически полным преобладанием дизелей, в большинстве случаев четырёхтактных, с жидкостным охлаждением, мощностью 440-625 кВт (600-850 л. с.) (мощность опытных образцов 735 - 1100 кВт (1000-1500 л. с.)). Имеется тенденция к дальнейшему увеличению мощности. Удельный расход топлива составляет 230-270 г/кВт ч (около 170-200 г/л.с. ч). Удельная мощность при этом находится в пределах 9,6-22 кВт/т (около 13-30 л.с./т), что обеспечивает ср. скорость на пересечённой местности до 25-40 км/ч.
В дизельном танковом двигателе условно различают 3 осн. механизма: кривошипный, газораспределения и передачи. Кривошипный механизм состоит из картера, блоков цилиндров, поршневой и шатунной группы, коленчатого вала и предназначен для преобразования возвратно поступательного движения поршня во вращат. движение коленчатого вала. Механизм газораспределения включает распределит, валы и клапанные механизмы, служит для открывания и закрывания впускных и выпускных клапанов в головках блоков цилиндров. Механизм передачи обеспечивает вращение распределит, валов механизма газораспределения и всех вспомогат. агрегатов от коленчатого вала. К конструкции танкового двигателя предъявляются след, требования: большая мощность при миним. габаритных размерах и массе, высокая надёжность в эксплуатации, миним. расход топлива, возможность запуска и работы при низких темп-pax. Одним из важнейших показателей танкового двигателя является габаритная мощность Np (отношение макс, мощности к габаритному объёму двигателя), к-рая достигает величины 370-600 кВт/м3 (около 500-900 л.с./м3) и зависит от степени форсирования и мощности, приходящейся на 1 литр рабочего объёма всех цилиндров танкового двигателя, а также от его компоновки. Осн. путями форсирования являются наддув и переход на двухтактный процесс. Двухтактные двигатели, напр., установлены на англ, танке «Чифтен» и шведском «S». Среди четырёхтактных наиболее рациональную компоновку имеют 6-12-цилиндровые двигатели с V-образным расположением цилиндров, что позволяет уменьшить объём двигателя за счёт размещения вспомогат. агрегатов в развале между цилиндрами. Для двухтактных танковых двигателей обычно применяется схема с двумя противоположно движущимися поршнями в каждом цилиндре (с общей камерой сгорания и прямоточной продувкой). На танковых двигателях наибольшее распространение получило жидкостное охлаждение, обеспечивающее по сравнению с воздушным более интенсивный отвод тепла.
Большинство танковых двигателей, разработанных в 60-70-е гг., являются многотопливными, т.е. способными работать на бензине, керосине, дизельном и спец. авиац. топливах, что значительно облегчает снабжение танков. Во мн. странах усиленно ведутся работы но созданию танк, газотурбинных двигателей (ГТД). Их осн. преимущества - меньшие габаритные размеры и масса по сравнению с поршневыми, лёгкий запуск при низких температуpax, простота приспособления к различ. топливам. Недостаток состоит в том, что известные образцы ГТД расходуют в 1,5-2 раза больше топлива, чем дизельные двигатели. Однако, как указывается в зарубежной печати, газотурбинные танковые двигатели весьма перспективны.
Лит.: Косырев Е.А., Орехов Е.М., Фомин Н.Н. Танки. М., 1973; Танки и танковые войска. М., 1970; Почтарев Н.Ф. Быстроходные четырехтактные дизели. М., 1965; Танк. М., 1954.
В.А. Мангушев.

просмотров