Диагностирование кшм при работающем и неработающем двигателе. Кривошипно-шатунные механизмы

Диагностирование кшм при работающем и неработающем двигателе. Кривошипно-шатунные механизмы

Техническое обслуживание кривошипно-шатунного механизма и механизма газораспределения

1 . Проверка технического состояния кривошипио-шатун-ного механизма.

Суммарный зазор в верхней головке шатуна и шатунном подшипнике

Количество газов, прорывающихся в картер

2. Проверка технического состояния механизма газораспределения.

Расход сжатого воздуха, подаваемо­го в цилиндры

Изменение разрежения во впускном трубопроводе

Упругость клапанных пружин

3. Работы, выполняемые при ТО кривошипно-шатунного механизма и механизма газораспределения.

Проверка технического состояния кривошипио-шатун--+\,ного механизма. Техническое состояние кривошипно-ша-тутнного механизма оценивают по характеристикам виб-роударных импульсов в характерных точках двигателя (виброакустическая метод), суммарному размеру зазоров в верхней головке шатуна и шатунном подшипнике, ко­личеству газов, прорывающихся в картер, давлению в цилиндрах в конце такта сжатия (компрессии), расхо­ду или падению давления сжатого воздуха, подаваемого в цилиндры.

Виброакустическийметод дает наиболее достоверные и исчерпывающие результаты диагности­рования при использовании комплекта виброакустической аппаратуры. Однако из-за большой стоимости исложности, требующей высокой квалификации операто­ров-диагностов, его применение ограничено.

Наиболее простым и доступным устройством для виб-роакустического контроля является стетоскоп. В корпусе стетоскопа размещены источник питания н усилитель, с одной стороны корпуса выведен наконечник-щуп, с дру­гой - головной телефон с соединительным кабелем.

Перед диагностированием двигатель прогревают до температуры охлаждающей жидкости 85...95°С и про­слушивают, прикасаясь остриём щупа к проверяемым участкам.

Работу сопряжения поршень - цилиндр прослушива­ют по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю. Сильный, глухого тона стук, иногда напоминающий дрожащий звук колокола и усиливающийся с увеличением нагрузки, возможен при увеличенном зазоре между поршнем и цилиндром, изгибе шатуна, перекосе оси шатунной шейки или поршневого пальца. Скрипы и шорохи указывают на начинающееся заедание, вызванное малым зазором или недостаточным количеством смазки.

Состояние сопряжения поршневое кольцо-канавка поршня проверяют на уровне НМТ хода поршня у всех цилиндров при средней частоте вращения колен­чатого вала. Слабый, щелкающий стук высокого тона, похожий на звук от ударов колец одно о другое, свидетельствует об увеличенном зазоре между кольцами и поршневой канавкой либо об изломе кольца.

Сопряжение поршневой палец-втул­ка верхней головки шатуна проверяют на уровне ВМТ при малой частоте вращения коленчатого вала с резким переходом насреднюю. Сильный звук высокого тона, похожий на частые удары молотком по наковальне, указывает на ослабление сопряжения недостаточность. Смазки или чрезмерно большое опережение начала подачи топлива.

Работу сопряжения коленчатый вал - шатунный подшипник прослушивают в зо­не от ВМТ до НМТ сначала при малой, а затем при средней частоте вращения коленчатого вала. Глухой звук среднего тона свидетельствует об износе или проворачивании вкладыша, звонкий, сильный металлический звук -об износе или подплавлении шатунного подшипника.

Суммарный зазор в верхней головке шатуна и шатунном подшипнике опреде­ляют при неработающем двигателе с помощью устрой­ства КИ-11140. С проверяемого цилиндра двигателя снимают свечу зажигания (у дизельных дви­гателей - форсунку) и на ее место устанавливают наконечник 2 устройства, К основанию 4 через штуцер при­соединяют компрессорно-вакуумную установку.

Установив поршень за 0,5…1 от ВМТ на такте сжатия, стопорят коленчатый вал от проворачивания и попеременно создают в цилиндре давление 200 кПа, и разрежение 60 кПа, вследствие чего поршень поднима­ется и опускается, выбирая зазоры. Суммарный размер зазоров фиксируется индикатором 3.

У двигателей КамАЗ-740 возможен изгиб шатунного вкладыша, что может привести к его проворачиванию. Для измерения изгиба вкладыша в цилиндре создают давление 0, 6 МПа и через 30 с (дав вкладышу про­гнуться) устанавливают стрел­ку индикатора 3 на нулевую отметку. Сняв давление, по показаниям индикатора оп­ределяют изгиб шатунного вкладыша, предельное зна­чение которого - 48 мкм.

Количество газов, прорывающихся в картер , позволяет устано­вить состояние сопряжения

поршень- поршневые кольца - цилиндр двигателя. Про­верку осуществляют на прогретом двигателе с помощью прибора (расходомера) КИ-4887-1. Прибор снабжен трубой с вмонтированными в нее входным 5 и выходным 6 дроссельными кранами. Входной патрубок 4 присоединяют к маслозаливной горловине двигателя, эжектор 7 для отсоса газов устанавливают внутри выхлопной трубы или присоединяют к вакуумной установке. Картерные газы отсасывают через расходомер за счет разрежения в эжекторе. Количество отсасываемых газов регу­лируют дроссельными кранами 5 и 6 так, чтобы давление в полости картера было равно атмосферному, жидкость в столбиках 2 и 3 манометра должна находиться на одном уровне. Дроссельным краном 5 устанавливают перепад давления Аh, одинаковый для всех измерений, по шкале прибора определяют количество прорывающихсягазови сравнивают его с нормативным.

Если при контроле поочередно отключать цилиндры (например, вывертывая свечи зажигания), то по сниже­нию количества прорывающихся газов можно оценить герметичность отдельных цилиндров.

Перед измерением компрессии промывают воз­душный фильтр, контролируют фазы газораспределения и регулируют тепловые зазоры клапанов. Компрессию в цилиндрах определяют компрессометром, представляю­щим собой корпус с вмонтированным в него манометром. Манометр соединен с одним концом трубки, на другом конце которой имеется золотник с резиновым наконеч­ником, плотно вставляемым в отверстие для свечи за­жигания. Проворачивая коленчатый вал двигателя стар­тером или пусковой рукояткой, измеряют максимальное давление в цилиндре и сравнивают его с нормативным.

Для карбюраторных двигателей номинальные значения компрессии составляют 0,75...0,8 МПа, а предельные - 0,65 МПа. Предельные значения компрессий двигателей ЯМЗ и КамАЗ составляют соответственно 2,7и 1,8......2 МПа.

Падение компрессии ниже предельной возможнопри эакоксовывании поршневых колец, их залегании всвязис потерей упругости или поломке.

, измеряют прибором К-69М. Сжатый воздух подается в цилиндр от ком-. прессорной установки через штуцер, ввернутый в отвер­стие свечи зажигания или форсунки, при неработающем двигателе. Рукояткой редуктора давления 11 прибор на­страивают так, чтобы при полностью закрытом клапане 4 штуцера 6 стрелка манометра 7 находилась против нулевого деления, а при полностью открытом клапане и утечке воздуха в атмосферу - против деления 100 %.

Проворачивая пусковой рукояткой коленчатый вал, устанавливают поршень в положение конца такта сжа­тия (в этот момент свисток-сигнализатор, надетыйна штуцер, перестает свистеть). Сняв свисток, надевают на штуцер быстросъемную муфту соединительного шлан­га прибора. Как только стрелка прибора остановится, определяют расход сжатого воздуха, подаваемого в ци­линдр, и сравниваютегос предельным значением Если расод превышает, предельное значение, возможны следующие неисправности:

зависание, обогревание клапанов (слышен сильный шум через отв ерстие для свечей);

поломка или пригорание колец (слышен сильный шум через маслозаливную горловину);

прогорание про­кладки головки цилинд­ров (наблюдается обильное появление пузырей воздуха между головкой и блоком при смачивание места их стыка мыльной эмульсией или в заливкой горловине радиатора);

прогорание перемычек прокладки между цилиндрами (слышен сильный шум воздуха, перетекающегов смеж­ный цилиндр).

Проверка технического состояния механизма газораспределения. Техническое состояние механизма газорас­пределения оценивают по расходу сжатого воздуха, по­даваемого в цилиндры, характеристике изменения во времени разрежения во впускном трубопроводе, упругос­ти клапанных пружин.

Расход сжатого воздуха, подаваемо­го в цилиндры , характеризует техническое состояние, как цилиндропоршневой группы, так и механизма газораспределения. Для выявления конкретной неисправ­ности после измерения этого диагностического параметра рассмотренным выше способом в цилиндры заливают мо­торное масло и повторяют измерение. Разность результа­тов измерений в первом и втором случаях покажет рас­ход сжатого воздуха через клапаны и прокладку головки цилиндров.

Изменение разрежения во впускном трубопроводе фиксируют с помощью помещенные в трубопровод датчиков. При работе двигателя в уста­новившемся режиме измеряют амплитуды и продолжи­тельность импульсов впуска и выпуска газов и фазовый сдвиг импульса относительно ВМТ поршня. Амплитуда пульсаций газов определяет герметичность клапанов, продолжительность импульса - зазоры в клапанах, а фазовый сдвиг - состояние механизма газораспределе­ния.

Упругость клапанных пружин проверяют как без снятия их с двигателя, так и после разборки кла­панного механизма. Для контроля пружин непосредст­венно на двигателе снимают крышки клапанного меха­низма и устанавливают поршень в ВМТ при такте сжа­тия. Прибор КИ-723 ставят ножками 3 на тарелку клапанной пружины, перемещают подвижное кольцо 5 в крайнее верхнее положение и нажимают на рукоятку 1 до тех пор, пока клапанная пружина не ося­дет на 0,5...1мм. Затем прибор снимают с клапана, фик­сируют его показания и повторяют измерение. Если уси­лие сжатия пружины окажется меньше предельного, пру­жину необходимо заменить или подложить под нее прок­ладку.

Все больше применяют способы акустической диагностики, основанные на использовании вибрационных и шумовых характеристик диагностируемых сборочных единиц, в том числе и для определения технического состояния цилиндро поршневой группы двигателя.

Возникающие вибрации в зоне цилиндров вызваны ударами в поршневой группе, особенно мощными при прохождении поршня ВМТ и при перекладке поршня с одной стороны гильзы на другую. Величина ударного импульса зависит от зазора между гильзой, поршнем и кольцами и увеличивается с увеличением износа цилиндро поршневой группы. Возникающие шумы и вибрации позволяют определять техническое состояние цилиндро нательно использовать два метода диагностирования, причем второй является контрольным. Такой усиленный контроль особенно необходим в случае приближения технического состояния проверяемого объекта к предельно допустимому.

Кривошипно-шатунный механизм состоит Из коленчатого вала с шатунными и коренными подшипниками, шатунов, поршневых пальцев и маховика. Все эти детали работают в условиях больших знакопеременных нагрузок, при значительных колебаниях температуры (особенно в период запуска двигателя) и при большой частоте вращения коленчатого вала. При тяжелых условиях работы деталей кривошипно-шатунного механизма важнейшее значение для его работоспособности имеет поддержание стабильных условий смазки в подшипниковых узлах. В сопряжениях коленчатого вала с шатунными и коренными подшипниками поддерживаются условия жидкостного трения, которые зависят от величины радиального зазора. По мере износа подшипников и шеек коленчатого вала радиальный зазор увеличивается, что приводит к увеличению утечек масла сквозь зазор из главной магистрали, снижению давления в главной магистрали, ухудшению смазки поршневого пальца. Кроме того, при этом нарушаются условия жидкостного трения, что приводит к увеличению динамических нагрузок в подшипниковых узлах.

Давление масла

Следовательно, основным структурным параметром, характеризующим работоспособность кривошипно-шатунного механизма, является радиальный зазор подшипниковых узлов. Для оценки состояния используют диагностические параметры: давление масла в главной масляной магистрали; расход масла в единицу времени; шум и стук, возникающие в сопряжениях.

Давление масла в главной магистрали определяют приспособлением КИ-4940 или устройством КИ-5472. И то. и другое оборудование состоит из манометра, соединительного гибкого рукава, сменных штуцеров (переходников). В комплект КИ-4940 включен штуцер-тройник, позволяющий включать приспособление параллельно рабочему манометру двигателя.

При измерении давления в главной магистрали двигателя устройство подключают к корпусу фильтра па

При определении технического состояния цилиндро поршневой группы двигателя, работающей в наиболее тяжелых условиях, использование одного какого-либо метода диагностирования не всегда дает удовлетворительные результаты, а иногда приводит к совершенно неправильному диагнозу. Это объясняется влиянием на диагностические сигналы технического состояния других систем и сопряжений двигателя, оказывающих взаимное влияние на проверяемое сопряжение, поэтому при диагностировании цилиндро поршневой группы для постановки достаточно точного и обоснованного диагноза же параллельно с подключением рабочего манометра. При нормальном тепловом состоянии двигателя во время его работы определяют давление масла сначала при номинальной частоте вращения коленчатого вала, а затем при минимально устойчивой частоте. При номинальной частоте вращения номинальное давление масла для разных двигателей колеблется в пределах 0,2 ... 0,7 МПа, а предельные значения давления масла составляют 0,12...0,2 МПа. При минимальной частоте вращения коленчатого вала предельное значение давления масла составляет 0,08 ... О,11 МПа.

Давление в ресивере

Для уточнения диагноза двигатель прослушивают, выявляя стуки в различных сопряжениях, для чего используют стетоскопы. Наиболее характерные зоны прослушивания двигателя, в том числе зоны подшипников коленчатого вала, даны. Хорошо прослушиваются стуки в подшипниках при резком изменении частоты вращения коленчатого вала двигателя.

Для определения расхода масла через зазоры в подшипниках коленчатого вала используют масляные калибраторы. Измерения, производят на неработающем двигателе. Прибор подключают к главной масляной магистрали двигателя и при постоянном давлении нагнетают в магистраль масло, фиксируя количество масла, поступающего в магистраль для поддержания давления.

Одним из наиболее эффективных способов определения технического состояния кривошипно-шатунного механизма является прослушивание неработающего двигателя, камеры сгорания которого подключены к компрессорно-вакуумной установке. Компрессорно-вакуумная установка переменно создает в над поршневом пространстве разряжение и повышенное давление.

Для этих целей применяют установку КИ-4942 или КИ-13907. Установка КИ-4942 состоит из одноступенчатого поршневого компрессора, двух ресиверов (сжатого и разреженного воздуха), аппаратуры очистки и управления воздушным потоком, соединительных трубопроводов, электродвигателя привода компрессора и аппаратуры управления электродвигателем.

Давление в ресивере сжатого воздуха контролируют манометром, а в ресивере разреженного воздуха - вакуумметром. Ресиверы снабжены соответственно предохранительным клапаном и регулятором вакуума. Для создания разрежения в одном ресивере краном соединяют этот ресивер с компрессором и отключают от компрессора другой ресивер (сжатого воздуха).

В ресивере

При этом во время работы компрессора воздух выкачивается из ресивера разреженного воздуха и из компрессора выходит в атмосферу. Для создания давления в ресивере сжатого воздуха с ним соединяют нагнетательную полость компрессора, а всасывающую полость отключают от ресивера разреженного воздуха и соединяют с атмосферой. В этом случае воздух из атмосферы через компрессор нагнетается в ресивер сжатого воздуха.

В ресивере разреженного воздуха создается разрежение 0,06 ... 0,07 МПа, в ресивере сжатого воздуха создается давление 0,2 ... 0,25 МПа.

Для подключения установки снимают с проверяемого цилиндра двигателя форсунку, устанавливают поршень в ВМТ и включением передачи фиксируют положение поршня. После этого наконечник компрессорно-вакуумной установки вставляют в отверстие для форсунки и закрепляют его на двигателе. Во время установки наконечника к нему перекрыт доступ воздуха -из ресиверов. Стетоскоп устанавливают в зону наилучшего прослушивания стуков в сопряжении поршень поршневой палец - верхняя головка шатуна и затем при помощи воздухораспределителя попеременно соединяют над поршневую полость то с ресивером разреженного воздуха, то с ресивером сжатого воздуха. Возникающее в камере сгорания разрежение и сжатие перемещают поршень на величину зазоров в сопряжениях, что приводит к возникновению стуков как и верхней головке шатуна, так и в шатунных подшипниках. Для обнаружения стуков и шатунных подшипниках при работе компрессорно-вакуумнои установки наконечник стетоскопа прикладывают к торцу коленчатого вала.

После проверки одного цилиндра подобным образом

Результаты диагноза в этом случае во многом зависят от опытности оператора, поэтому для принятия окончательного решения о состоянии проверяемых сопряжений измеряют суммарный зазор в верхней головке шатуна и шатунном подшипнике индикаторным устройством К ГТ -11140 или приспособлением КИ-7329.

Устройство

Устройство КИ-11140 включает в себя: корпус со сменным фланцем для установки устройства в гнездо форсунки; индикатор часового типа, ножка которого соединена со штоком, проходящим через направляющую в корпусе устройства; пневматический приемник для подсоединения наконечника компрессорно-вакуумной установки.

Чтобы измерить зазоры кривошипно-шатунной группы при положении поршня в ВМТ и застопоренном коленчатом валу, устанавливают и закрепляют устройство в форсуночном отверстии проверяемого цилиндра. Подсоединяют к устройству компрессорно-вакуумную установку и создают давление в над поршневом пространстве, вводят шток до соприкосновения с днищем поршня и устанавливают индикатор на нулевую отметку. Затем медленно создают разрежение в над поршневом пространстве и по индикатору измеряют величины зазоров при двух остановках движения поршня. Перемещение от нулевой отметки до первой остановки соответствует зазору в сопряжениях верхней головки шатуна, а перемещение от первой остановки до второй соответствует зазору в шатунных подшипниках. Общее перемещение соответствует суммарному зазору в шатунных подшипниках и в верхней головке шатуна. Допускаемая величина суммарного зазора для разных двигателей составляет 0,6...0,75 мм, предельные значения зазора для верхней головки шатуна - 0,4...0,45 мм, а для шатунных подшипников - 0,45...0,55 мм. По величине измеренных зазоров судят о состоянии каждой кривошипно-шатунной группы и всего двигателя. При превышении допустимых значений зазоров хотя бы в одном цилиндре необходим ремонт двигателя. По результатам измерений прогнозируют остаточный ресурс двигателя (прогноз ведется с учетом максимального значения измеренных зазоров).

Компрессорно-вакуумную установку используют также при диагностировании кривошипно-шатунной группы по вибро акустическим параметрам.

ТЕМА 2.9. Техническое обслуживание и текущий ремонт кривошипно-шатунного и газораспределительного механизмов

1 Основные неисправности КШМ и ГРМ:

Рисунок 1 – Основные отказы, поломки, неисправности КШМ и ГРМ

Все неисправности обусловлены естественным изнашиванием или разрушением деталей.

В итоге повышается расход топлива и снижение мощности двигателя, дымной выхлоп.

Неисправности устраняются путем проведения текущих ремонтов (заменой или регулировкой).

Таблица 1 Распределение отказов по двигателю, возникающих в эксплуатации

2 Основные признаки неисправности КШМ:

1 Уменьшение компрессии в цилиндрах

2 Появление шумов и стуков при работе двигателя

3 Прорыв газов в картер и появление из маслоналивной горловины голубоватого дыма с резким запахом

4 Увеличение расхода масла

5 Разжижение масла топливом

6 Забрасывание свечей зажигания маслом

Признаки неисправностей служат:

1 Вспышки в карбюраторе

2 Хлопки в глушителе

3 Шумы и стуки при работе

4 Неустойчивая работа двигателя

Таблица 2 – Основные дефекты и поломки деталей двигателя



Продолжение таблицы 2


Продолжение таблицы 2


Продолжение таблицы 2


Окончание таблицы 2



3 Основные параметры двигателя, определяемые при их диагностике:



1 Мощность

Предельные значения диагностических параметров, измеряемых на тяговом стенде модели К 485 Б легковых автомобилей.

Таблица 3 – Предельные значения диагностических параметров

Примечание – Предельные значения параметров автомобилей приведены для режимов диагностирования:

Время разгона скорости 30 км/час до 90 км/час;

Время выбега измеряется со скорости 90 км/час до 30 км/час;

Тяговая сила на колесах измеряется при скорости 80 км/час.

2 Компрессия

Таблица 4

3 Количество картерных газов

Таблица 5 – Значение параметров количества газов, прорывающихся в картер двигателя

4 Давление масла, расход масла

5 Стуки, шумы, вибрации

6 Разряжение во впускном трубопроводе

Таблица 6 – Значение параметров разряжения во впускном трубопроводе на минимальных оборотах холостого хода двигателя

У исправного двигателя разряжение во впускном трубопроводе должно составлять 380-430 мм.рт.ст. при проворачивании двигателя стартером.

ДИАГНОСТИРОВАНИЕ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КШМ И ГРМ

4.1 Определение компрессии

а) Определить величину компрессии в цилиндрах карбюраторного двигателя.

Компрессии характеризует состояние цилиндропоршневой группы, а также плотность прилегания клапанов к своим седлам. Компрессию в цилиндрах двигателя проверяют при помощи КОМПРЕССОМЕТРА или КОМПРЕССОГРАФА.

Порядок проверки величины давления (компрессию) в цилиндрах двигателя:

Пустить и прогреть двигатель (до70–80 0 С);

Проверить исправность аккумуляторной батареи;

Вывернуть все свечи зажигания;

Открыть полностью воздушную и дроссельную заслонки карбюратора;

Вставить резиновый наконечник компрессора в свечное отверстие и плотно прижать;

Провернуть коленчатый вал двигателя стартером 10-12 оборотов со скоростью 180–200 об/мин;

Записать показания и выпустить воздух из компрессора.

Таким же способом замерить компрессию в остальных цилиндрах.

Замер компрессии необходимо проделать для всех цилиндров по 3 раза и определить среднее арифметическое значение. Разница в величине компрессии по отдельным цилиндрам не должна быть более 1 кгс/см 2 . Для исправных двигателей компрессия должна быть (см. таблицу 6).

Предельное изменение компрессии по цилиндрам двигателя допустимо:

Для карбюраторного двигателя 1,0 кгс/см 2 ;

Для дизельного двигателя 2,0 кгс/см 2 .

Для выявления причин пониженной компрессии залить в цилиндр 20–25 см свежего масла для двигателя и вновь измерить компрессию. Если величина компрессии при этом незначительно увеличится, то это указывает на неплотное прилегание клапанов к седлам, на обгорание фасок клапанов или на повреждение головки цилиндров. Если же компрессия увеличилась до нормы и выше, то это указывает на износ или пригорание поршневых колец, поршней.

б) Определить величину компрессии в цилиндрах дизельного двигателя.

Для чего:

Пустить и прогреть двигатель (до 70 0 – 80 0 С);

Заглушить двигатель;

Установить компрессометр на место форсунки первого цилиндра, предварительно сняв форсунку;

Пустить двигатель и записать давление, показываемое манометром при работающем на холостом ходу двигателе (560 об/мин);

Зафиксировать показания компрессометра. Компрессия должна быть не ниже (см. таблицу 6). Таким способом замерить компрессию в остальных цилиндрах.

Разница в показаниях компрессометра по отдельным цилиндрам не должна превышать 2 кгс/см 2 .

При значительном понижении компрессии необходимо проверить состояние клапанов, свободно ли перемещается клапан, крепление головки цилиндров, состояние клапана, цилиндров и поршневых колец.

Недостатки этого метода:

1. Разрядка аккумуляторной батареи (карбюраторного двигателя)

2. Невозможность определения неисправности влияющей на герметичность

Кроме компрессометров можно определить компрессию с помощью компрессографа записывающим показания манометра.

Одним из менее трудоемких, но требующих определенных навыков методов диагностики двигателя, является прослушивание его работы с помощью различного типа виброакустических приборов -- от самых простых по конструкции стетоскопов со звукочувствительным стержнем (напоминающих медицинские фонендоскопы), до электронных стетоскопов типа «Экранас» и ультразвуковых стетоскопов с двумя наушниками модели УС-01.

Для усиления звукового эффекта от виброударных импульсов в характерных точках и зонах двигателя (рис. 1 стетоскоп «Экранас» (рис. 2, а) снабжен двухтранзисторным усилителем низкой частоты 4 с пьезокристаллическим датчиком и батарейным питанием (3 В). Пластмассовый корпус 3 имеет гнезда для установки стержня 5 и подключения телефона-наушника 6. У стетоскопа модели КИ-1154(рис. 2, б), на стержне 5 смонтирован усилитель 3 и слуховой наконечник 6 рупорного типа.

Рис. 1.

Рис. 2. Стетоскопы: а -- электронный стетоскоп «Экранас»; б -- стетоскоп мод. КИ-1154; 1-провод; 2 -- элементы питания; 3- корпус-ручка; 4 -преобразователь виброударных импульсов; 5 - звукочувствительный стержень; 6- телефон-наушник

Ультразвуковой стетоскоп модели УС-01 (рис. 3) отличается наличием двух каналов (звукового и ультразвукового), специальных наушников, насадков на микрофон в виде гибких зондов, позволяющих прослушивать работу механизмов в труднодоступных местах при повышенной температуре деталей двигателя, а также электронного табло на корпусе, высвечивающего в цифрах силу стуков и шумов (в децибелах -- дБ) -- все это делает данную модель стетоскопа эффективным средством диагностики технического состояния КШМ и ГРМ двигателей. Источник питания прибора имеет напряжение 12 В.

Рис.3.

Перед диагностированием двигатель следует прогреть до температуры охлаждающей жидкости (90 ± 5) °С. Прослушивание производят, прикасаясь острием наконечника звукочувствительного стержня в зоне сопряжения проверяемого механизма.

Работу сопряжения поршень -- цилиндр прослушивают по всей высоте цилиндра по зонам 1 (рис. 3.8) при малой частоте вращения коленчатого вала (KB) с переходом на среднюю -- стуки сильного глухого тона, усиливающиеся с увеличением нагрузки, свидетельствуют о возможном увеличении зазора между поршнем и цилиндром, об изгибе шатуна, поршневого пальца и т.д.

Сопряжение поршневое кольцо--канавка проверяют на уровне НМТ хода поршня (зона 8) на средней частоте вращения KB -- слабый стук высокого тона свидетельствует об увеличенном зазоре между кольцами и канавками поршней, либо о чрезмерном износе или поломке колец.

Сопряжение поршневой палец-втулка верхней головки шатуна проверяют на уровне ВМТ (зона 3) при малой частоте вращения KB с резким переходом на среднюю. Сильный стук высокого тона, похожий на частые удары молотком по наковальне, говорит о повышенном износе деталей сопряжения.

Работу сопряжения коленчатый вал-шатунный подшипник прослушивают в зонах 7 на малой и средней частотах вращения КВ. Глухой звук среднего тона сопровождает износ шатунных вкладышей. Стук коренных подшипников KB прослушивают в этих же зонах (чуть ниже) при резком изменении частоты вращения KB (максимальным открытием или прикрытием дроссельной заслонки) -- сильный глухой стук низкого тона свидетельствует об износе коренных подшипников. Стук в клапанных механизмах прослушивают в зонах 2, наличие износа шеек распредвала -- в зонах 5, а износа распределительных шестерен -- в зоне 6.

Широко используемым методом диагностирования технического состояния КШМ и ГРМ двигателей является замер компрессии в цилиндрах двигателей в конце тактов сжатия с помощью различного типа компрессометров и компрессо-графов с самописцами.

Рис 4.

a -- для карбюраторных двигателей; б -- для дизелей; 1 -- корпус; 2 -- манометр; 3 -- штуцер; 5 -- контргайки; 6 -- трубка; 7 -- резиновый наконечник; 8 -- золотник; 10 -- выпускной клапан; 11 -- шланг; 12 -- переходник; 13 -- зажимная гайка; 14 -- клапан; 15 -- пружина клапана; 16 -- седло; 17 -- наконечник

На рис.4, а изображен компрессометр мод. 179 с рукояткой пистолетного типа, манометром, наконечником для установки в свечное отверстие, кнопкой клапана сброса давления (от предыдущего показания) и т.д.

Несколько отличается по конструкции компрессометр для дизелей (рис. 4, б). В нижней части он снабжен жестким металлическим корпусом с зажимной гайкой и наконечником, которые вместе с корпусом устанавливаются на место форсунок в головке блока с последующим креплением болтом и скобой форсунки.

Перед началом проверки компрессии следует прогреть двигатель, вывернуть все свечи и полностью открыть воздушную и дроссельную заслонки. Затем наконечник прибора вставляется в отверстие для свечи первого цилиндра и плотно прижимается к гнезду. Коленчатый вал проворачивается при проверке стартером (частота вращения должна быть не менее 200--250 мин -1) не менее 10--12 оборотов. После этого следует проверить по манометру (или по отрывной карточке) показания прибора и сравнить его с нормативным. Аналогично проверяют компрессию в других цилиндрах двигателя. Отклонение показаний от нормативных для данной модели двигателя более чем на 25% свидетельствует о серьезной неисправности двигателя и необходимости прекращения его эксплуатации.

Проверка компрессии производится при полностью закрытых клапанах проверяемого цилиндра.

При значительном снижении компрессии следует попытаться определить место негерметичности. В этих целях в свечное отверстие заливают иногда до 20 см 3 моторного масла для временного уплотнения колец. Если после этого показания прибора не увеличатся, то это свидетельствует о негерметичности клапанов. Компрессия для карбюраторных двигателей с пониженной степенью сжатия составляет обычно 0,7--0,8 МПа, для двигателей с повышенной степенью сжатия -- 0,9--1,5 МПа, для дизелей различных моделей 3,5--5 МПа. Причем даже при допустимом снижении компрессии разница в показаниях для отдельных цилиндров карбюраторных двигателей не должна превышать 0,1 МПа, а для дизелей -- 0,2 МПа.

Одним из методов поэлементной диагностики является измерение зазоров в кривошипно-шатунном механизме с помощью прибора мод. КИ-11140-ГОСНИТИ (рис.5,а). Он состоит из корпуса 2 с закрепленным на нем индикатором 1 часового типа (с ценой деления 1 мк), пневматического приемника 3, фланца 4 для крепления устройства в головке цилиндров вместо форсунки или свечи зажигания, уплотнителя 5, направляющей 6 и штока 7, жестко соединенного с ножкой индикатора. На рис.5, б показана

Рис.5.

А - общий вид прибора; б - установка прибора на двигатель

установка прибора на двигателе с подсоединенным шлангом от компрессорно-вакуумной установки мод. КИ-13907.

Суммарную величину зазоров в верхней головке шатуна и шатунном подшипнике определяют при неработающем двигателе, предварительно сняв с него свечу зажигания или форсунку (если диагностируется дизель), и на их место устанавливают уплотнитель 5 с прибором. К боковой трубке с помощью быстросъемной муфты 9 подсоединяют шланг компрессорно-вакуумной установки. Затем устанавливают поршень на 0,5-1,0 мм ниже ВМТ на такте сжатия, стопорят коленчатый вал двигателя от проворачивания и попеременно создают в цилиндре через трубку 6 давление в 200 кПа и разрежение в 60 кПа, отчего поршень поднимается или опускается, устраняя зазоры в вышеперечисленных сопряжениях. Суммарный зазор при этом фиксируется индикатором. Например, суммарный зазор для двигателя ЗИЛ-130 не должен превышать 0,25--0,3 мм. Этот метод используется в основном в лабораториях (в учебном процессе) при испытаниях двигателей на долговечность.

Диагностирование технического состояния КШМ и ГРМ можно производить не только с помощью компрессометров: в последнее время стали использовать для этой цели вакуум-анализатор мод. КИ-5315ТОСНИТИ (рис.6). Наконечник 1 прибора вставляется на место свечи. При опускании поршня в цилиндре создается разрежение, фиксируемое вакуумметром 9. После чего показания сравнивают с нормативными.

Рис.6.

1 -- наконечник; 2,5 -- клапаны; 3,4 -- пружины клапанов; 6 -- регулировочный винт; 7 -- корпус; 8 -- вентиль;9 -- вакуумметр

6. Методы, средства и технология диагностирования КШМ и ГРМ двигателя

КШМ. Кривошипно-шатунный механизм включает цилиндро-поршневую группу (гильзы цилиндров, поршни и поршневые кольца), коленчатый вал с шатунными и ко­ренными подшипниками, шатуны со втулками, поршне­вые пальцы и маховик.

Основным показателем состояния цилиндро-поршневой группы считается расход картерного масла на угар. Чтобы с достаточной точностью определить угар масла, требует­ся несколько контрольных смен с точными замерами ко­личества доливаемою масла и топлива, что чрезвычайно трудоемко. При этом невозможно учесть утечки масла через не плотности сальников коленчатого вала и разъе­мов картера. Кроме того, угар масла в течение длительного времени работы двигателя изменяется незначительно и лишь при большом износе деталей цилиндро-поршневой группы, в частности поршневых колец, начинает резко возрастать. Такой характер изменения угара масла в за­висимости от наработки затрудняет прогнозирование по нему остаточного ресурса.

Об интенсивности изнашивания сочленений двигателя можно судить по концентрации продуктов износа в картерном масле, определяемой с помощью спектрографической установки. В этом случае для оценки степени изношенности основных деталей наряду с регулярным спект­ральным анализом проб масла, отбираемых через определенные промежутки работы двигателя, необходимо знать их химический состав и соотношение скоростей из­нашивания сочленений. О целесообразности разборки дви­гателя для ремонта или устранения неисправности судят по резкому возрастанию концентрации основных элемен­тов в работавшем масле.

Наибольшее распространение для оценки состояния цилиндро-поршневой группы получил способ определения количества газов, прорывающихся в картер. При измере­нии количества газов с помощью обычного прибора, на­пример ротаметра, из за высокого сопротивления выходу газов из картера и наличия в картере избыточного давления часть газов уходитв атмосферу через сальники ко­ленчатого вала и другие не плотности, минуя прибор.

Чтобы избежать этого, во время измерений необходи­мо отсасывать газы из картера, обеспечивая прохожде­ние их только через измерительное устройство.

Угар картерного масла и количество газов, прорываю­щихся в картер при работе двигателя на всех цилиндрах, являются интегральными (суммарными) оценочными по­казателями технического состояния цилиндре поршневой группы.

Чтобы оценить состояние каждого цилиндра в отдель­ности, их поочередно выключают. За­тем подсчитывают разницу между расходом газов, полученным при декомпрессировании проверяемого ци­линдра, и средним расходом газов, полученным при декомпрессировании каждого из остальных цилиндров. При одинаковом состоянии всех цилиндров указанная разница будет незначительной. Если же она окажется большой, то это свидетельствует об аварийном состоянии данного цилиндра.

Сравнительною оценку технического состояния цилиндров можно дать по компрессии в них (давлению конца сжатия). Однако при этом необходимо учитывать не плотности клапанов газораспределения. Разница в зна­чениях компрессии у нового и изношенного двигателей, возрастает с понижением частоты вращения коленчатого вала. Поэтому компрессию рекомендуется определять при пусковых оборотах коленчатого вала Чтобы дать правильную сравнительную оценку состояния цилиндров по компрессии, должно быть соблюдено равенство и по­стоянство частоты вращения коленчатого вала и темпе­ратуры стенок цилиндров при проверке каждого из них в отдельности. В связи с тем, что частота вращения коленчатого вала зависит от технического состояния пуско­вого устройства, а температура стенок цилиндров – от условий проверки двигателя (предварительного разогре­ва его, температуры окружающей среды), соблюдение отмеченных условии не всегда представляется возможным. Следовательно, компрессия является ориен­тировочным показателем технического состояния цилинд­ро-поршневой группы. Одним из признаков слабой компрессии является трудный пуск двигателя (особенно в холодною погоду), обусловленный чрезмерно низкой температурой сжатого воздуха, не обеспечивающей само­воспламенения дизельного топлива.

О состоянии подшипников коленчатого вала можно судить по зазорам в них. Эллипсность и конусность шеек вала до разборки двигателя на ремонт можно не прове­рять так как эти показатели являются следствием износа подшипников.

На протяжении ряда лет многими исследователями велись поиски безразборных методов оценки технического состояния подшипников коленчатого вала по диагности­ческим параметрам. Наибольшую известность получили способы, основанные на определении следующих показа­телей: давления масла в главной масляной магистрали, количества масла, протекающего через подшипники в единицу времени, шумов и стуков, возникающих от ударов в сопряже­ниях при работе двигателя, стуков, возникающих от соударения деталей в резуль­тате искусственного перемещения поршня и шатуна на величину зазоров в сопряжениях.

Широкое распространение получило прослушивание двигателя во время его работы. С увеличением зазоров в подшипниках появляются характерные стуки, прослу­шиваемые в определенных зонах и при соответствующих режимах работы двигателя. Однако эти стуки отчетливо прослушиваются при значениях зазоров, превосходящих допустимые. При этом количественная оценка зазоров зависит от слуховых качеств и опыта оператора.

ГРМ. Основными показателями технического состояния механизма газораспределения являются плотность при­легания клапанов к гнездам головки, зазоры между стержнями клапанов и бойками коромысел, фазы газо­распределения, степень изношенности кулачков, подшип­ников распределительного вала и шестерен распределе­ния, состояние прокладки и головки цилиндров, а также упругость клапанных пружин.

Наличие неплотностей в сопряжениях тарелок клапа­нов и гнезд головки можно определить по характерному шипению или свисту воздуха во впускных и выпускных каналах головки или трубопроводах, если прокручивать коленчатый вал вручную при снятых коромыслах и воздухоочистителе.

Разработан метод, позво­ляющий давать количественною оценку неплотностей клапанов по расходу воздуха, проходящего через каждый клапан в отдельности при подаче его в камеру сгорания неработающего двигателя.

Расположение тарелок клапанов относительно днища головки (утопание клапанов) можно определять двумя способами. При первом способе замеряют непосредствен­но расстояние между плоскостью днища головки и пло­скостью торца тарелки клапана при снятой головке. При втором способе указанное расстояние определяют кос­венно – по расстоянию между плоскостью торца стержня клапана и обработанной плоскостью головки со стороны клапанного механизма, замеряемому на двигателе при снятой крышке клапанной коробки. Первый способ обыч­но применяют при ремонте двигателя, а второй – при диагнос­тировании узлов и агрегатов при эксплуатации.

Степень изношенности кулачков распределительного вала оценивают по высоте кулачков, которую можно оп­ределить непосредственно на двигателе по величине перемещения клапанов с учетом зазоров между их стерж­нями и бойками коромысел.

Упругость клапанных пружин без снятия их с двига­теля можно определить по усилию прижатия клапанов к гнездам головки.

Неудовлетворительная работа механизма газораспре­деления, сопровождающаяся снижением мощности и эко­номичности двигателя, возможна из-за нарушения фаз газораспределения. При нарушении фаз вследствие не­правильного соединения шестерен распределения (не по меткам) начало открытия и конец закрытия клапанов смещаются на один и тот же угол по отношению к в. м. т. поршней всех цилиндров. Если же причиной смещения фаз является износ деталей механизма газораспределения, то из-за неравномерного износа узлов и деталей, главным образом кулачков распределительного вала, углы начала открытия и конца закрытия клапанов могут несколько отличаться друг от друга. Поэтому для сокращения трудоемкости фазы газораспределения у многоцилиндровых двигателей рекомендуется проверять по углу начала открытия впускного клапана первого и последнего цилиндров и оценивать их по среднему арифметическому значению, полученному от измерений.

Если происходят случаи скручивания распре­делительных валов, происходящего главным образом из-за заедания подшипников после ремонта двигателя. Эту неисправность можно обнаружить по результатам измерения углов начала открытия впускного клапана первого и последнего цилиндров. При нормальном со­стоянии вала эти углы будут одного и того же порядка. При проектировании и доводке двигателей рассчиты­вают и корректируют фазы газораспределения с учетом тепловых зазоров между клапанами и коромыслами, устанавливаемых также расчетным путем. Фактически открытие клапанов начинается после того, как будет пол­ностью выбран тепловой зазор. Отсюда следует, что фазы газораспределения нужно проверять при номиналь­ных зазорах клапанов.

Для ориентировочной оценки величин зазоров клапа­нов без снятия крышки пользуются обычным стетоскопом, наконечник которого прикладывают к клапанной коробке. При чрезмерно больших зазорах в области клапанного механизма прослушиваются четкие металлические стуки при малой частоте вращения коленчатого вала. Этот ме­тод является субъективным. При обнаружении стуков необходимо остановить двигатель, вскрыть кла­панную коробку и проверить зазоры путем непосредст­венных измерений.

Суммарный износ деталей механизма газораспреде­ления (шестерен газораспределения, подшипников и ку­лачков распределительного вала) можно определить по смещению фаз в сторону запаздывания. Ориентировочную оценку состояния шестерен распределения и подшипников распределительного вала можно дать по шуму и сту­кам, пользуясь стетоскопом.

просмотров