Какой оптимальный надо блок питания для автоусилителя. Изготовление блока питания для автомобильного усилителя

Какой оптимальный надо блок питания для автоусилителя. Изготовление блока питания для автомобильного усилителя

Рис. 1 моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания

Преобразователь напряжения в схеме блоков питания автомобильных усилителей , как и любой источник питания, имеет некоторое выходное сопротивление. При питании от общего источника между каналами многоканальных усилителей звука возникает взаимосвязь, которая тем больше, чем выше выходное сопротивление источника питания. Оно, обратно пропорционально мощности преобразователя.

Одной из составляющих выходного сопротивления блока питания становится и сопротивление питающих проводов. В моделях высокого класса для питания выходных каскадов усилителя мощности звука используют медные шины сечением 3...5 мм. Это наиболее простое решение проблем с питанием усилителя звука, улучшающее динамику и качество звучания.

Конечно, повысив мощность источника питания, взаимное влияние каналов можно уменьшить, но полностью исключить его нельзя. Если же использовать для каждого канала отдельный преобразователь, проблема снимается. Требования к отдельным источникам питания при этом можно заметно снизить. Обычно уровень переходного затухания автомобильных усилителей с общим блоком питания составляет для бюджетных моделей 40...55 дБ, для более дорогих - 50...65 дБ. Для автомобильных усилителей звука с раздельными блоками питания этот показатель превышает 70 дБ.

Преобразователи напряжения питания делятся на две группы - стабилизированные и нестабилизированные . Нестабилизированные заметно проще и дешевле, но им свойственны серьезные недостатки. На пиках мощности выходное напряжение преобразователя снижается, что приводит к увеличению искажений. Если увеличить мощность преобразователя, это снизит экономичность при малой выходной мощности. Поэтому нестабилизированные преобразователи применяются, как правило, в недорогих усилителях с суммарной мощностью каналов не более 100... 120 Вт. При более высокой выходной мощности усилителя предпочтение отдается стабилизированным преобразователям.

Как правило, блок питания смонтирован в одном корпусе с усилителем (на рис. 1 показана моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания), но в некоторых конструкциях он может быть выполнен в виде внешнего блока или отдельного модуля. Для включения автомобильного усилителя в рабочий режима усилителя используется управляющее напряжение от головного аппарата (вывод Remote). Потребляемый по этому выводу ток минимален - несколько миллиампер - и никак не связан с мощностью усилителя. В автомобильных усилителях обязательно используется защита от короткого замыкания нагрузки и от перегрева. В ряде случаев имеется также защита акустичеких систем от постоянного напряжения в случае выхода из строя выходного каскада усилителя. Эта часть схемы для современных автомобильных усилителей стала практически типовой и может отличаться незначительными изменениями.

Рис. 2 Схема стабилизированного блока питания автомобильного усилителя звука "Monacor НРВ 150"

В первых автомобильных усилителях в блоках питания использовались преобразователи напряжения, выполненные полностью на дискретных элементах. Пример такой схемы стабилизированного блока питания автомобильного усилителя звука "Monacor НРВ 150" (рис. 2). На схеме сохранена заводская нумерация элементов.

Задающий генератор выполнен на транзисторах VT106 и VT107 по схеме симметричного мультивибратора. Работой задающего генератора управляет ключ на транзисторе VT101. Транзисторы VT103, VT105 и VT102, VT104 - двухтактные буферные каскады, улучшающие форму импульсов задающего генератора. Выходной каскад выполнен на параллельно включенных биполярных транзисторах VT111, VT113 и VT110, VT112. Согласующие эмиттерные повторители на VT108 и VT109 питаются пониженным напряжением, снимаемым с части первичной обмотки трансформатора. Диоды VD106 - VD111 ограничивают степень насыщения выходных транзисторов. Для дополнительного ускорения закрывания этих транзисторов введены диоды VD104, VD105. Диоды VD102, VD103 обеспечивают плавный запуск преобразователя. С отдельной обмотки трансформатора напряжение, пропорциональное выходному, подается на выпрямитель (диод VD113, конденсатор С106). Это напряжение обеспечивает быстрое закрывание выходных транзисторов и способствует стабилизации выходного напряжения.

Недостаток биполярных транзисторов - высокое напряжение насыщения при большом токе. При токе 10... 15 А это напряжение достигает 1 В, что значительно снижает КПД преобразователя и его надежность. Частоту преобразования не удается сделать выше 25...30 кГц, в результате растут габариты трансформатора преобразователя и потери в нем.

Применение полевых транзисторов в блоке питания повышает надежность и экономичность. Частота преобразования во многих блоках превышает 100 кГц. Появление специализированных микросхем, содержащих на одном кристалле задающий генератор и цепи управления, значительно упростило конструкцию блоков питания для мощных автомобильных усилителей.

Рис. 3 Упрощенная схема нестабилизированного преобразователя напряжения питания автомобильного усилителя "Jensen"

Упрощенная схема нестабилизированного преобразователя напряжения питания четырехканального автомобильного усилителя "Jensen" приведена на рис. 3 (нумерация элементов на схеме условная).

Задающий генератор преобразователя напряжения собран на микросхеме KIA494P или TL494 (отечественный аналог - КР1114ЕУ4). Цепи защиты на схеме не показаны. В выходном каскаде, помимо указанных на схеме типов приборов, можно использовать мощные полевые транзисторы IRF150, IRFP044 и IRFP054 или отечественные КП812В, КП850. В конструкции использованы отдельные диодные сборки с общим анодом и с общим катодом, смонтированные через изолирующие теплопроводящие прокладки на общем теплоотводе вместе с выходными транзисторами усилителя.

Трансформатор можно намотать на ферритовом кольце типоразмера К42х28х10 или К42х25х11 с магнитной проницаемостью μ э =2000. Первичная обмотка намотана жгутом из восьми проводов диаметром 1,2 мм, вторичная - жгутом из четырех проводов диаметром 1 мм. После намотки каждый из жгутов разделен на две равные части, и начало одной половины обмотки соединено с концом другой. Первичная обмотка содержит 2x7 витков, вторичная - 2x15 витков, равномерно распределенных по кольцу.

Дроссель L1 намотан на ферритовом стержне диаметром 16 мм и содержит 10 витков эмалированного провода диаметром 2 мм. Дроссели L2, L3 намотаны на ферритовых стержнях диаметром 10 мм и содержат по 10 витков провода диаметром 1 мм. Длина каждого стержня 20 мм.

Подобная схема блоков питания с незначительными изменениями используется в автомобильных усилителях с суммарной выходной мощностью до 100... 120 Вт. Варьируются число пар выходных транзисторов, параметры трансформатора и устройство цепей защиты. В преобразователях напряжения более мощных усилителей вводят обратную связь по выходному напряжению, увеличивают число выходных транзисторов.

Для равномерного распределения нагрузки и уменьшения влияния разброса параметров транзисторов в трансформаторе токи мощных транзисторов распределяют на несколько первичных обмоток. Например, в преобразователе блока питания автомобильного усилителя "Lanzar 5.200" использовано 20! мощных полевых транзисторов, по 10 в каждом плече. Повышающий трансформатор содержит 5 первичных обмоток. К каждой из них подключено по 4 транзистора (параллельно по два в плече). Для лучшей фильтрации высокочастотных помех возле транзисторов установлены индивидуальные конденсаторы сглаживающего фильтра суммарной емкостью 22000 мкФ. Выводы обмоток трансформатора подключены непосредственно к транзисторам, без использования печатных проводников.

Поскольку автомобильным усилителям звука приходится работать в очень тяжелом температурном режиме, для обеспечения надежной работы в некоторых конструкциях используются встроенные вентиляторы охлаждения, продувающие воздух через каналы теплоотвода. Управление вентиляторами осуществляется с помощью термодатчика. Встречаются устройства как с дискретным управлением ("включен-выключен"), так и с плавной регулировкой скорости вращения вентилятора.

Наряду с этим, во всех усилителях используется термозащита блоков. Чаще всего она реализуется на основе термистора и компаратора. Иногда применяют стандартные компараторы в интегральном исполнении, но в этой роли чаще всего используют обычные микросхемы операционных усилителей ОУ. Пример схемы устройства термозащиты используемой в уже рассмотренном четырехканальном автомобильном усилителе "Jensen" приведен на рис. 4. На схеме, нумерация деталей условная.

Термистор R t 1 имеет тепловой контакт с корпусом усилителя вблизи выходных транзисторов. Напряжение с термистора подано на инвертирующий вход ОУ. Резисторы R1 - R3 вместе с термистором образуют мост, конденсатор С1 предотвращает ложные срабатывания защиты. При длине проводов, которыми термистор подключен к плате, около 20 см уровень наводок от блока питания достаточно велик. Через резистор R4 осуществляется положительная обратная связь с выхода ОУ, превращающая ОУ в пороговый элемент с гистерезисом. При нагреве корпуса до 100 °С сопротивление термистора снижается до 25 кОм, компаратор срабатывает и высоким уровнем напряжения на выходе блокирует работу преобразователя.

Выходные транзисторы усилителя и ключевые транзисторы преобразователя питания чаще всего применяют в пластиковых корпусах, ТО-220. К теплоотводу их крепят либо винтами, либо пружинными клипсами. У транзисторов в металлических корпусах теплоотвод несколько лучше, но поскольку устанавливать их нужно через специальные теплоотводящие прокладки, монтаж их намного сложнее, поэтому используют их в автоусилителях значительно редко, только в самых дорогих моделях.

Когда-то звуковые усилители (УНЧ) были большими, с кучей ламп, огромными радиаторами для транзисторов, тяжелыми трансформаторами в БП. Но жизнь не стоит на месте. Теперь компактные микросхемы с цифровыми УНЧ заменили ламповых и транзисторных динозавров почти во всех устройствах широкого потребления. Можно без особых усилий сконструировать компактный усилитель, например на чипе PAM8610. Для питания использовался блок питания из обзора.

УНЧ на PAM8610 существует в нескольких вариантах, стоит совсем недорого. Купить можно например тут - . Было решено использовать готовую плату с регулятором громкости и распаянными разъемами. Существует еще ультрабютжетный вариант. Его обозревали тут на сайте - . Почему именно этот усилитель - цена и очень хорошие впечатления от младших моделей PAM8403/PAM8406: , .
Посмотрим, как проявит себя старшая модель усилителя.

Характеристики модуля:
Питание 7-15 В, рекомендуемое 12 В
Мощность до 10 Вт на канал при сопротивлении нагрузки 8 Ом
Защита от КЗ, перегрева
КПД усилителя до 90 %

Судя по описанию, отличные характеристики для такого малыша.

Фото:




Флюс немного не до конца отмыт.

Подключение динамиков никак не обозначено. Опытном путем и по аналогичной немного другой плате выяснено:


Штекер питания - центр "+", вокруг - "-"

Микросхема под радиатором у этого варианта усилителя - это хорошо. Перемычки на плате - одна временно откл звук (mute), вторая не знаю.

Для питания конструкции было решено использовать БП из ссылки в начале обзора. Это БП очень подробно обозревался . Блок питания хорошо работает в предельных режимах, компактный и недорогой. Теоретический можно получить с этим блоком питания суммарную мощность около 12 Ватт на два канала. Или реальных около 5 Ватт на канал. Меня данный блок питания и мощность УНЧ устраивали. Для большего усиления микросхемы при использовании источника сигнала в виде сотового телефона или ЦАП-а необходимо использовать предварительное усиление перед микросхемой, что мне делать не хотелось. Да и мощности в 5 Ватт на канал для моих целей достаточно. Но мы все равно протестируем микросхему УНЧ и БП в разных режимах и на нагрузке разного сопротивления.

Блок питания:


Для тестирования нагрузки используем мощные резисторы 4 Ома, 6 Ом, 8 Ом на 100 Ватт:


Купить их можно тут


Подключаем все модули и резисторы.

Проводим измерения.
Напряжение питания усилителя 12 В, на вход подается сигнал в 1000 Гц от звукового генератора. Мощность рассчитывается квадрат напряжения на выходе одного канала усилителя (измерения вольтметром переменного тока) при подключенной нагрузки делится сопротивление нагрузки

Первая группа тестов
Обычный источник (телефон или ЦАП (DAC)). Uвх=0.15 В. Тестирование проводилось на БП из обзора, без предварительного усиления. Во всех случаях защита от перегрева на микросхеме и по току на БП не срабатывала.


У меня колонки сопротивлением 4 Ома - первая строчка - мой режим использования усилителя.

Вторая группа тестов
Отключение БП из обзора по защите по току. Увеличиваем Uвх до срабатывания защиты на БП. Этот режим возможен при использовании предварительно усилителя (например, ) перед усилителем из обзора

Третья группа тестов
Предельный режим. Используется лабораторный БП. Тесты завершаются, если микросхема усилителя отключается от перегрева (температура микросхемы в этом случае больше 100 градусов Цельсия). В реальности для реализации этого режима необходим более мощный БП (12 В 2 А например) и предварительное усиление сигнала.


Думаю большую мощность, чем заявлена, удалось получить с помощью радиатора на микросхеме УНЧ.

Тесты могут пригодиться, если вы собираетесь использовать эту микросхему УНЧ для своего усилителя или сделаете мощную портативную колонку с предусилителем и мощным аккумулятором.

Температура на радиатор чипа. Радиатор тут - это хорошо. А ведь есть варианты этой платы и без радиатора.

Температура на резисторах:

Если тут при 9 Ваттах такая температура, то что же будет при тестировании 100 ваттного усилка?

Тест на синусоиду. На вход подаем синусоиду 1000 Гц и смотрим осциллографом, что имеем на выходе усилителя.

18+ Читателям с неустойчивой психикой не смотреть

Вход усилителя:


Выход при очень маленькой громкости:


Средний уровень громкости:


Синусоида на максимуме. Чип УНЧ на грани отключения от перегрева.


Я удивился результатам - у младших PAM8403/PAM8406 на выходе с синусоидой все ок. Может перепутал что-то при измерения. Полез в инет и нашел видеообзор подобной микросхемы - . Правда там товаришь не подключал к выходу нагрузку и без предусилка тесты проводил (не вывел микросхему на предельные режимы).


После завершения тестов решил все облагородить. Компоненты для сборки:

Роутер используется как . Прошил аналогично обзору. Так же был сделан переключатель типа тумблер на обычный линейный вход.
Корпус куплен оффлайн за 400 руб - самый дешевый по отношения цена-размер-качество.


Получилось так:




Первоначально был установлен DC-преобразватель 12->5 В на основе ШИМ контроллера. Но пришлось установить второй блок питания на 5 В по двум причинам:
1. Помехи. Убрал земляные петли, но какие-то помехи (возможно от преобразователя) остались.
2. В случае перегруза БП отключается по защите - роутер перегружается и это не хорошо - долго он перегружается.

Итог:






Моя мини Hi-Fi система:


Для моих задач (озвучить ванную и коридор) мощности БП и качества звука от УНЧ вполне хватает.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +35 Добавить в избранное Обзор понравился +25 +59

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства - это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты "Phoenix P-400".

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора "импульсный БП или на основе сетевого трансформатора" не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора - имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я.

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см 2) * Площадь сечения (см 2)
  • Площадь окна = 3,14 * (d/2) 2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см 2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см 2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал - где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение - по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ - провод диаметром 1,5 мм;
  • для остальных обмоток - 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков - узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 - нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода - получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков - 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) - 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину - 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться.

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй - получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя - А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 - емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB - стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG - стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW - регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * (1 + R2/R1)

Vxx для микросхем имеет следующие значения:

  • LM317 - 1,25;
  • 7805 - 5;
  • 7812 - 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

  • +36В, -36В - усилители мощности на TDA7250
  • 12В - электронные регуляторы громкости, стерео-процессоры, индикаторы выходной мощности , схемы термоконтроля, вентиляторы, подсветка;
  • 5В - индикаторы температуры, микроконтроллер, панель цифрового управления.

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант "все на одной плате" тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве - на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель - печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD : Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать - (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

Если в вашем автомобиле нет места для мощной аудиосистемы и автомобильный усилитель оказался не у дел, не отдавайте его и не выбрасывайте. Его можно использовать в доме или на улице, для его подключения можно использовать блок питания от компьютера.

О ЧЁМ СТАТЬЯ?

Действия

1. Найдите пин включения питания

  • В упаковке с блоком питания(при покупке нового) должна быть схема выводов. Ищите пин, который подписан типа «Power on», «PS OK» или другие ключевые слова, указывающие на сигнал. Он будет на самом большом разъёме.
  • На новых источниках питания, в 99% случаев это будет зеленый провод, но для более старых моделей(«10+ лет») провод может быть желтым или фиолетовым. Если ваш блок питания не поставляется с диаграммой распиновки, проверьте сайт производителя на схему выводов.

2. Отрежьте провод включения питания от разъёма и зачистите край от изоляции

3. Отрежьте провод заземления от разъёма и тоже зачистите край от изоляции


  • Обратитесь к схеме выводов, чтобы узнать, какой цвет является провод заземления. 99,9% это будет черный провод.

4. Соедините оба зачищенных конца и заизолируйте

5. Соедините все 12v провода

зачистив их концы, вместе, предварительно отрезав их от разъёма.

  • Обратитесь к схеме выводов, чтобы узнать, какой цвет имеют провода 12v. В 99,9% случаев это будут желтые провода.

6. Соедините все минусовые провода вместе, отрезая их от разъёма и зачищая концы


  • Обратитесь к схеме выводов, чтобы узнать, какой цвет является минусовым. В 99,9% случаев это будут черные провода.

7. Возьмите скрученные желтые провода 12v и прикрепите их к клеме «+» усилителя


  • Некоторые усилители могут просто маркировать «12v» вместо «+».

8. Возьмите скрученные черные провода и прикрепите их к клеме «-» усилителя

9. Для подключения “+” или “12v” к источнику “REM” или “REMOTE” на усилителе используйте отброшенный кусок провода

10. Подключите к усилителю источник сигнала, акустические системы и наш блок питания

  • Теперь можно включать в розетку блок питания и наслаждаться музыкой!

  • Вы можете добавить выключатель в шаге 4. Просто подключите оба конца провода к выключателю. Это даст вам возможность отключить питание кнопкой вместо того, чтобы отключать и подключать источник питания в розетку.
Недавно было решено повторить известную схему преобразователя аккумуляторного напряжения автомобиля 12 вольт, в повышенное двухполярное, для питания мощных УМЗЧ. Показана основа схемы, далее её можно "усовершенствовать"по своим желаниям. Схема проста, надежна, при мощности близкой к максимальной практически не наблюдается нагревания диодов моста, трансформатора и выходных ключей. Хотя в генераторе преобразователя и стоит классическая TL494 - схема работает на ура.

Весь преобразователь питания собран на небольшой печатной плате из фольгированного стелотекстолита, транзисторы и мощные диоды припаяны металлическими фланцами наружу - к ним прикручивается массивный алюминиевый радиатор. Его размеры зависят от нагрузки, подключенной к устройству.

На следующей фотографии показан вид со стороны монтажа. Разрисовка платы и схемы в Layout - на форуме.


В качестве выпрямительных диодов стоят диоды Шоттки. Данным девайсом раскачивал в автомобиле две STK4044, субъективная оценка - очень хорошо!


При выходном напряжении U=+-51В, для нормальной работы микросхем STK на холостом ходу, при P=max просадка порядка 1,5 Вольт на плечо. Думаю этот провал мало ощутим на слух, тем более что усилитель на максимуме вряд ли кто слушает постоянно. Плата разработана собственноручно,можно сказать на скорую руку, так что вы можете усовершенствовать её по желанию. В общем данный самодельный преобразователь для автомобильного УНЧ работает на 100% - рекомендую к повторению. Более подробно зависимость мощности от напряжения выхода и сопротивления динамика УМЗЧ, показана в таблице.

просмотров