Защита литий-ионных аккумуляторов (контроллер защиты Li-ion). Li-ion и Li-polymer аккумуляторы в наших конструкциях Контроллеры для литий ионных аккумуляторов 18650

Защита литий-ионных аккумуляторов (контроллер защиты Li-ion). Li-ion и Li-polymer аккумуляторы в наших конструкциях Контроллеры для литий ионных аккумуляторов 18650

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC .

Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки (“банки”) на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути “мозг” контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 – ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 – это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge ) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge ) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage V OCP ), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage V OCR ) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage V ODP ), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release Voltage V ODR ), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за “смерть” аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер – G2NK (серия S-8261 ), сборка полевых транзисторов – KC3J1 .

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к “внешнему миру”, то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (V ODR ).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить “банку” аккумулятора, чтобы контроллер опять включил транзистор разряда – FET1?

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P , G2NK ), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда – Charger Detection . То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время – несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться “восстановительная” зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection ) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Схема контроллера литий-ионного аккумулятора
Схема контроллера литий-ионного аккумулятора Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора Если расковырять любой аккумулятор от сотового телефона, то можно


Наверное, у большинства радиолюбителей, с годами заводится коробка, в которую складываются “на потом” литиевые аккумуляторы от безвременно усопших (утонувших, упавших с балкона, сгрызенных Дружком) мобильных телефонов и фотоаппаратов . Лежат себе в коробке и ждут своего часа.. А час всё не наступает. Причина проста – чтобы использовать аккумулятор в том же фонарике к нему надо сделать контроллер зарядки , а чипов зарядки в местном радиомагазине почему то не завезли.. Да, проблема.

И что делать бедному радиолюбителю? Всё очень просто – можно обойтись “подножным кормом” используя то, что скрыто от глаз среднего пользователя. А именно плату защиты, которая бережно спрятана внутри каждого литий-ионного или литий-полимерного аккумулятора . Без неё не позволяют применять аккумуляторы в бытовой технике из-за исключительной активности лития. Если разобрать аккумулятор от мобильного телефона , мы обнаружим внутри вот такое нехитрое устройство:

Это и есть плата защиты аккумулятора . На этой плате установлен чип двухуровневого компаратора и полевой транзистор . При снижении напряжения на аккумуляторе ниже 3в или подъёме выше 4,25в этот компаратор отключает транзистор и изолирует аккумулятор от внешнего мира, тем самым защищая от повреждения.

У меня родилась идея попробовать использовать эти свойства платы защиты для управления процессом зарядки телефонного аккумулятора от стандартного USB-порта компьютера (который в качестве бонуса имеет ограничитель тока на 500мА). Вот и получаем суп из топора. Точней зарядку “из ничего”. Осталось каким то образом отобразить пользователю протекание (и завершение) процесса зарядки . Ниже приведена схема этого узла.

Работает очень просто. При подключению к USB порту происходит старт зарядки и загорается светодиод . Ток заряда ограничен портом компьютера и резисторами на плате. По достижении напряжения на аккумуляторе 4,25в срабатывает компаратор платы защиты и разорвёт цепь заряда. Светодиод погаснет. В первом варианте зарядки я применял кнопку для начала процесса зарядки. Но оказалось достаточно конденсатора на 100нФ для первоначального открывания полевого транзистора. Схема очень простая и начинает работать без наладки.
Файл платы можно скачать в разделе “Каталог файлов”

Если при повторении этой конструкции у Вас возникли какие-то вопросы или идеи по улучшению её, напишите мне в онлайн форме свои соображения по этому поводу.

Как зарядить литий ионный аккумулятор без контроллера
Как зарядить литий ионный аккумулятор без контроллера Наверное, у большинства радиолюбителей, с годами заводится коробка, в которую складываются “на потом” литиевые аккумуляторы от


Если вы интересуетесь как заряжать литий ионный аккумулятор, значит вы попали по адресу.

Современные мобильные устройства требуют автономного источника питания.

Причем это справедливо как для «высоких технологий» вроде смартфонов и ноутбуков, так и для более простых устройств, скажем, электродрелей или мультиметров.

Существует масса типов разнообразных аккумуляторов. Но для портативной техники чаще всего используются Li-Ion.

К столь широкому распространению привела относительная простота производства и невысокая стоимость.

Поспособствовали этому и отличные эксплуатационные характеристики, плюс низкий саморазряд и большой запас циклов зарядки-разрядки.

Важно! Для большего удобства большинство таких батарей снабжается специальным контролирующим устройством, которое не дает заряду переходить критические отметки.

При критической разрядке эта схема просто перестает подавать напряжение на устройство, а во время превышения допустимого уровня заряда отключает поступающий ток.

При этом после достижения номинальных 100%зарядка должна продлится еще полтора-два часа.

Это необходимо потому что фактически батарея будет заряжена на 70–80%.

При зарядке от ноутбука или стационарного компьютера необходимо учитывать, что USB порт неспособен обеспечить достаточного высокого напряжения, следовательно, процесс отнимет больше времени.

Чередование циклов полной и неполной (80–90%) зарядки продлит срок использования устройства.

Несмотря на столь умную архитектуру и общую неприхотливость, соблюдение некоторых правил использования аккумуляторов поможет продлить срок их использования.

Чтобы батарея устройства не «страдала» достаточно придерживаться простых рекомендаций.

Правило 1. Не нужно полностью разряжать аккумулятор

У литий-ионных аккумуляторов современных конструкций отсутствует «эффект памяти». Поэтому заряжать их лучше до того, как настанет момент полной разрядки.

Некоторые производители отмеряют срок службы своих батарей именно количеством циклов зарядки с нулевого значения.

Наиболее качественная продукция способна переносить до 600 таких циклов. При зарядке батареи с 10–20% остатком количество циклов возрастает до 1700.

Правило 2. Полную разрядку все же необходимо предпринимать раз в три месяца

При нестабильной и нерегулярной зарядке среднестатистические отметки максимального и минимального зарядов в упомянутом ранее контроллере сбиваются.

Это приводит к тому, что устройство получает некорректную информацию о количестве заряда.

Предотвратить это поможет профилактическая разрядка. При полной разрядке аккумулятора, минимальное значение заряда в схеме управления (контроллере) обнулится.

После этого необходимо зарядить батарею «под завязку», продержав от восьми до двенадцати часов в подключенном к сети состоянии.

Это обновит максимальное значение. После такого цикла работа батареи будет стабильнее.

Правило 3. Неиспользуемый аккумулятор необходимо хранить с небольшим количеством заряда

Перед хранением лучшезарядить аккумуляторна 30–50% и хранить при температуре 15 0 С. В таких условиях батарея может храниться довольно долго без особого ущерба.

Полностью заряженный аккумулятор в процессе хранения потеряет существенную часть емкости.

А полностью разряженные после долгого хранения останется только отдать на переработку.

Правило 4. Зарядку необходимо производить только оригинальными устройствами

Примечательно, что непосредственно зарядное устройство встроено в конструкцию мобильного устройства (телефона, планшета и пр).

Внешний адаптер в таком случае выступает в роли выпрямителя и стабилизатора напряжения.

Использование сторонней «зарядки» может негативно сказаться на их состоянии.

Правило 5. Перегрев губителен для Li-Ion аккумуляторов

Высокие температуры крайне негативно отражаются на конструкции аккумуляторов. Низкие тоже губительны, но в гораздо меньшей степени.

Об этом необходимо помнить при эксплуатации литий-ионных батарей.

Батарею необходимо предохранять от прямых солнечных лучей и использовать на расстоянии от источников тепла.

Допустимый диапазон температур находится между -40 0 С и +50 0 С.

Правило 6. Зарядка батарей при помощи «лягушки»

Использование несертифицированных зарядных устройств небезопасно. В частности, распространенные «лягушки» китайского производства нередко воспламеняются в процессе зарядки.

Прежде чем использовать подобное универсальное зарядное устройство, необходимо сверится с указанными на упаковке максимально допустимыми значениями.

Так, внимание необходимо обратить на максимальную емкость.

Если ограничение меньше чем емкость аккумулятора, то в лучшем случае он полностью не зарядится.

При подключении батареи на корпусе «лягушки» должен засветиться соответствующий индикатор.

Если этого не происходит, значит, заряд критически низок или аккумулятор вышел из строя.

При подключении зарядного к сети должен засветиться индикатор подключения.

За достижение максимального заряда отвечает другой диод, который активируется в соответствующих условиях.

Советы по использованию Li-ion аккумуляторов

Как заряжать и обслуживать литий ионный аккумулятор: 6 простых правил

Как заряжать и обслуживать литий ионный аккумулятор: 6 простых правил
Как заряжать и обслуживать литий ионный аккумулятор: 6 простых правил Если вы интересуетесь как заряжать литий ионный аккумулятор, значит вы попали по адресу. Современные мобильные устройства

Защита литий-ионных аккумуляторов (Li-ion). Я думаю, что многие из вас знают, что, например, внутри аккумулятора от мобильного телефона имеется ещё и схема защиты (контроллер защиты), которая следит за тем, чтобы аккумулятор (ячейка, банка, итд…) не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания. Когда аккумулятор исчерпывает свой срок службы, из него можно достать плату контроллера защиты, а сам аккумулятор выбросить. Плата защиты может пригодиться для ремонта другого аккумулятора, для защиты банки (у которой нету схем защиты), либо же просто можно подключить плату к блоку питания, и поэкспериментировать с ней.

У меня имелось много плат защиты от пришедших в негодность аккумуляторов. Но поиск в инете по маркировкам микросхем ничего не давал, словно микросхемы засекречены. В инете находилась документация только на сборки полевых транзисторов, которые имеются в составе плат защиты. Давайте посмотрим на устройство типичной схемы защиты литий-ионного аккумулятора. Ниже представлена плата контроллера защиты, собранная на микросхеме контроллера с обозначением VC87, и транзисторной сборке 8814 ():

На фото мы видим: 1 - контроллер защиты (сердце всей схемы), 2 - сборка из двух полевых транзисторов (о них напишу ниже), 3 - резистор задающий ток срабатывания защиты (например при КЗ), 4 - конденсатор по питанию, 5 - резистор (на питание микросхемы-контроллера), 6 - терморезистор (стоит на некоторых платах, для контроля температуры аккумулятора).

Вот ещё один вариант контроллера (на этой плате терморезистор отсутствует), собран он на микросхеме с обозначением G2JH, и на транзисторной сборке 8205A ():

Два полевых транзистора нужны для того, чтобы можно было отдельно управлять защитой при заряде (Charge) и защитой при разряде (Discharge) аккумулятора. Даташиты на транзисторы находились практически всегда, а вот на микросхемы контроллеров - ни в какую!! И на днях вдруг я наткнулся на один интересный даташит на какой-то контроллер защиты литий-ионного аккумулятора ().

И тут, откуда не возьмись, явилось чудо - сравнив схему из даташита со своими платами защиты, я понял: Схемы совпадают, это одно и то же, микросхемы-клоны! Прочитав даташит, можно применять подобные контроллеры в своих самоделках, а поменяв номинал резистора, можно увеличить допустимый ток, который может отдать контроллер до срабатывания защиты.

Покупался лот из десяти штук, для переделки питания кое-каких устройств на li-ion аккумуляторы (сейчас в них используется 3АА аккумулятора ), но в обзоре я покажу другой вариант применения этой платы, который, хоть и не задействует все её возможности. Просто из этих десяти штук нужны только будут только шесть, а покупать поштучно 6 с защитой и пару без защиты получается менее выгодно.

Основанная на TP4056 плата заряда с защитой для Li-Ion аккумуляторов c током до 1A предназначена для полноценной зарядки и защиты аккумуляторов (к примеру, популярных 18650 ) с возможностью подключения нагрузки. Т.е. данную плату можно легко встроить в различные устройства, такие как фонарики, светильники, радиоприемники и т.д.,с питанием от встроенного литиевого аккумулятора, и заряжать его не вынимая из устройства любой USB-зарядкой через microUSB разъем. Ещё эта плата отлично подойдет для ремонта сгоревших зарядок Li-Ion аккумуляторов.

И так, кучка плат, каждая в индивидуальном пакетике (тут уже конечно меньше чем покупалось )

Выглядит платка вот так:

Можно рассмотреть поближе установленные элементы

Слева microUSB вход питания, питание также продублировано площадками + и - под пайку.

В центре контроллер заряда, Tpower TP4056, над ним пара светодиодов, отображающих либо процесс заряда (красный) либо окончание заряда (синий), под ним резистор R3, изменяя номинал которого можно изменить ток заряда аккумулятора. TP4056 заряжает аккмуляторы по алгоритму CC/CV и автоматически завершает процесс зарядки, если ток заряда снижается до 1/10 от установленного.

Табличка номиналов сопротивления и зарядного тока, согласно спецификации контроллера.


  • R (кОм) - I (mA)

  • 1.2 - 1000

  • 1.33 - 900

  • 1.5 - 780

  • 1.66 - 690

  • 2 - 580

  • 3 - 400

  • 4 - 300

  • 5 - 250

  • 10 - 130

правее стоит микросхема защиты аккумулятора (DW01A), с необходимой обвязкой (электронный ключ FS8205A 25мОм с током до 4А), и на правом краю есть площадки B+ и B- (будьте внимательны, возможна плата не защищена от переполюсовки ) для подключения аккумулятора и OUT+ OUT- для подключения нагрузки.

С обратной стороны платы нет ничего, так что её можно, например, приклеить.

А теперь вариант применения платы заряда и защиты li-ion аккумуляторов.

Ныне почти во всех видеокамерах любительского формата в качестве источников питания используются li-ion аккумуляторы напряжением 3,7В, т.е. 1S. Вот один из дополнительно купленных аккумуляторов для моей видеокамеры


У меня их несколько, производства (или маркировки ) DSTE модель VW-VBK360 емкостью по 4500мАч (не считая оригинального, на 1790мАч )

Зачем мне столько? Да, конечно, моя камера заряжается от БП с номиналами 5В 2А, и купив отдельно штекер USB и подходящий разъем, я теперь могу её заряжать и от повербанков (и это одна из причин зачем мне, и не только мне, их столько ), да вот только снимать на камеру, к которой ещё и тянется провод - неудобно. Значит надо как-то заряжать аккумуляторы вне камеры.

Я уже показывал в вот такую зарядку

Да-да, это она, с поворачивающейся вилкой американского стандарта

Вот так она легко разделяется

И вот так, в неё вживляется плата заряда и защиты литиевых аккумуляторов

И конечно же, я вывел пару светодиодов, красный - процесс заряда, зеленый - окончание заряда аккумулятора

Вторая плата была установлена аналогично, в зарядку от видеокамеры Sony. Да, конечно, новые модели видеокамер Sony заряжаются от USB, у них даже есть не отсоединяющийся USB-хвостик (глупое на мой взгляд решение ). Но опять же, в полевых условиях, снимать на камеру, к которой тянется кабель от повербанка менее удобно чем без него. Да и кабель должен быть достаточно длинным, а чем длиннее кабель, тем больше его сопротивление и тем больше на нем потери, а уменьшать сопротивление кабеля увеличивая толщину жил, кабель становится более толстым и менее гибким, что не добавляет удобства.

Так что из таких плат для заряда и защиты li-ion аккумуляторов до1А на TP4056 легко можно сделать простое зарядное устройство для аккумулятора своими руками, переделать зарядное устройство на питание от USB, например для зарядки аккумуляторов от повербанка, сделать ремонт зарядного устройства при необходимости.

Все написанное в этом обзоре можно увидеть в видеоверсии:


Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше - 3,6 V на элемент, вместо 1,2 V.
Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
Размеры есть разные и подобрать нужный не составляет труда.
Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317


Рис. 5.


Схема с применением обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

Надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054


Рис. 6.


Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).


Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

I=1000/R,
где I - ток заряда в Амперах, R - сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.


Рис. 8.


Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных - к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления - создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.

Для не очень больших токов подходят старые аккумуляторы от сотовых.


Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.

Где я применяю литиевые батареи

Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!

Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.

Ставлю в светодиодные фонарики.

В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.

Вообще ставлю везде, где получается, вместо батареек.

Где я покупаю литий и полезности по теме

Продаются . По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.

На счёт ёмкости китайцы обычно врут и она меньше написанной.


Честные Sanyo 18650

Речь пойдет про очень удобную плату с контроллером заряда на основе TP4056. На плате дополнительно установлена защита для аккумуляторов li-ion 3.7V.

Подходят для переделок игрушек и бытовой техники с батареек на аккумуляторы.
Это дешевый и эффективный молуль (зарядный ток до 1А).

Хоть про модули на чипе TP4056 написано уже много, добавлю немного от себя.
Совсем недавно узнал про , которые стоят чуть дороже, по размерам чуть больше, но дополнительно имеют в своем составе BMS модуль () для контроля и защиты аккумулятора от переразряда и перезаряда на основе S-8205A и DW01, которые отключают батарею при превышении напряжения на ней.


Платы предназначены для работы с элементами 18650 (в основном из-за зарядного тока 1А), но при некоторой переделке (перепайка резистора - уменьшение зарядного тока) подойдут для любые аккумуляторов на 3.7В.
Разводка платы удобная - присутствуют контактные площадки под пайку на вход, на выход и для аккумулятора. Штатно питать модули можно от Micro USB. Статус зарядки отображается встроенным светодиодом.
Размеры примерно 27 на 17 мм, толщина небольшая, самое «толстое» место - это MicroUSB коннектор


Specifications:
Type: Charger module
Input Voltage: 5V Recommended
Charge Cut-off Voltage: 4.2V (±)1%
Maximum Charging Current: 1000mA
Battery Over-discharge Protection Voltage: 2.5V
Battery Over-current Protection Current: 3A
Board Size: Approx. 27 * 17mm
Status LED: Red: Charging; Green: Complete Charging
Package Weight: 9g

По ссылке в заголовке продается лот из пяти штук, то есть цена одной платы около $0.6. Это чуть дороже, чем одна плата зарядки на TP4056, но без защиты - эти продаются пачками за полтора доллара. Но для нормальной работы нужно покупать отдельно BMS.

Коротко о подстройке зарядного тока для TP4056

Модуль контроллера заряда TP4056 + защита для аккумуляторов
Производит защиту от перезарядки, переразрядки, тройная защита от перегрузки и короткого замыкания.
Максимальный зарядный ток: 1 А
Максимальный постоянный ток разряда: 1 А (пик 1.5А)
Ограничение напряжения зарядки: 4.275 В ±0. 025 В
Ограничение (отсечка) разрядки: 2.75 В ±0. 1 В
Защита аккумулятора, чип: DW01.
B+ соединяется с положительным контактом аккумулятора
B- соединяется с отрицательным контактом аккумулятора
P- подключается к отрицательному контакту точки подключения нагрузки и зарядки.

На плате присутствует R3 (маркировка 122 - 1.2кОм), для выбора нужного тока зарядки элемента выбираем резистор согласно таблице и перепаиваем.


На всякий случай типовое включение TP4056 из спецификации.



Лот модулей TP4056+BMS берется уже не первый раз, уж оказался очень удобен для беспроблемных переделок бытовой техники и игрушек на аккумуляторы.

Размеры модулей небольшие, По ширине как раз меньше двух АА батареек, плоские - замечательно подходят с установкой старых аккумуляторов от сотовых телефонов.


Для зарядки используется стандартный источник на 5В от USB, вход - MicroUSB. Если платы используются каскадом - можно припаять к первой в параллель, на фото видно контакты минуса и плюса по сторонам от MicroUSB разъема.


С обратной стороны ничего нет - это может помочь при креплении на клей или скотч.


Используются разъемы MicroUSB для питания. У старых плат на TP4056 встречался MiniUSB.
Можно спаять платы вместе по входу и только одну подключать к USB - таким образом можно заряжать 18650 каскадами, например, для шуруповертов.


Выходы - крайние контактные площадки для подключения нагрузки (OUT +/–), в середине BAT +/– для подключения ячейки аккумулятора.


Плата небольшая и удобная. В отличие от просто модулей на TP4056 - здесь присутствует защита ячейки аккумуляторов.
Для соединения каскадом нужно соединить выходы под нагрузку (OUT +/–) последовательно, а входы по питанию параллельно.


Модуль идеально подходит для установки в различные бытовые приборы и игрушки, которые предусматривают питание от 2-3-4-5 элементов АА или ААА. Это во-первых, приносит некоторую экономию, особенно при частой замене батареек (в игрушках), а, во-вторых, удобство и универсальность. Использовать для питания можно элементы, взятые из старых аккумуляторов от ноутбуков, сотовых телефонов, одноразовых электронных сигарет и так далее. В случае, если есть три элемента, четыре, шесть и так далее, нужно использовать StepUp модуль для повышения напряжения от 3.7V до 4.5V/6.0V и т.д. В зависимости от нагрузки, конечно. Также удобен вариант на двух ячейках аккумуляторов (2S, две платы последовательно, 7.4V) со StepDown платой. Как правило, StepDown имеют регулировку, и можно подстроить любое напряжение в пределах напряжения питания. Это лишний объем для размещения вместо батареек АА/ААА, но тогда можно не переживать за электронику игрушки.


Конкретно, одна из плат была предназначена для старого икеевского миксера. Уж очень часто приходилось заменять батарейки в нем, а на аккумуляторах он работал плохо (в NiMH 1.2В вместо 1.5В). Моторчику все равно, будет ли его питать 3В или 3.7В, так что я обошелся без StepDown. Даже слегка бодрее крутить стал.


Аккумулятор 08570 от электронной сигареты практически идеальный вариант для любых переделок (емкость около 280мАч, а цена - бесплатно).


Но в данном случае несколько длинноват. Длина АА батарейки 50 мм, а этого аккумулятора 57 мм, не влез. Можно, конечно, сделать «надстройку», например, из пластика полиморфа, но…
В итоге взял мелкий модельный аккумулятор с такой же емкостью. Очень желательно снизить ток зарядки (до 250...300 мА) увеличением резистора R3 на плате. Можно штатный нагреть, отогнуть один конец, и припаять любой имеющийся на 2-3 кОм.

Слева привел картинку по старому модулю. На новом модуле размещение компонентов другое, но все те же самые элементы присутствуют.


Подключаем аккумулятор (Припаиваем) в клеммам в середине BAT +/–, отпаиваем контакты моторчика от пластин-контактор для АА батареек (их вообще убираем), припаиваем нагрузку-моторчик к выходу платы (OUT +/–).
В крышке дремелем можно прорезать отверстие под USB.


Я сделал новую крышку - старую совсем выкинул. В новой продуманы пазы для размещения платы и отверстие под MicroUSB.


Гифка работы миксера от аккумулятора - крутит бодро. Емкости 280мАч хватает на несколько минут работы, заряжать приходится в 3-6 дней, смотря как часто использовать (я пользуюсь редко, можно и за один раз посадить, если увлечься.). Из-за снижения тока зарядки заряжает долго, чуть меньше часа. Зато любой зарядкой от смартфона.


Если использовать StepDown контроллер для р/у машинок, то лучше взять два 18650 и две платы и соединить их последовательно (а входы для заряжания - параллельно), как на картинке. Где общий OUT ставится любой понижающий модуль и регулируется до нужного напряжения (например, 4.5V/6.0V) В этом случае машинка не будет медленно ездить, когда «сядут» батарейки. В случае разряда модуль просто резко отключится.

Модуль на TP4056 со встроенной защитой BMS – очень практичный и универсальный.
Модуль рассчитан на зарядный ток 1А.
Если соединяете каскадом - учитывайте суммарный ток при зарядке, например, 4 каскада для питания аккумуляторов шуруповерта «попросят» 4А на зарядку, а это з/у от сотового телефона не выдержит.
Модуль удобен для переделки игрушек - машинок на радиоуправлении, роботов, различных светильников, пультов… - всех возможных игрушек и техники, где приходится часто менять батарейки.

Update: если минус сквозной, то с запаралелливанием сложнее все.
См комментарии.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +57 Добавить в избранное Обзор понравился +29 +62
просмотров