Зарядка литиевых аккумуляторов схема. Как правильно зарядить литий-ионный аккумулятор: инструкция по эксплуатации Схема зарядки для 5 ионно литиевых аккумуляторов

Зарядка литиевых аккумуляторов схема. Как правильно зарядить литий-ионный аккумулятор: инструкция по эксплуатации Схема зарядки для 5 ионно литиевых аккумуляторов

Вы сможете ознакомиться со схемой зарядного устройства, которая отлично подойдет для литиевых Li-Ion аккумуляторов.

Сначала его автор хотел представить простой вариант на микросхеме lm317, но в этом случае зарядку нужно питать от более высокого напряжения, чем 5 вольт. Причина в том, что разница между входным и выходным напряжениями микросхемы lm317 должна быть не менее 2 Вольт. Напряжение заряженного литий-ионного аккумулятора составляет около 4,2 Вольт. Следовательно, разница напряжений меньше 1 вольта. А это это значит, что можно придумать другое решение.

На АлиЭкспресс можно купить специализированную плату для зарядки литиевых аккумуляторов, которая стоит около доллара. Да, это так, но зачем покупать то, что можно сделать за пару минут. Тем более нужно месяц пока заказ будет у вас. Но если решили приобрести готовый, чтобы сразу пользоваться им, купите в этом китайском магазине . В поиске по магазину впишите: TP4056 1A

Самая простая схема

Сегодня рассмотрим варианты UDB-зарядного устройства для литиевых аккумуляторов, которое сможет повторить каждый. Схема самая самая простая, которую можно только придумать.

Решение


Это гибридная схема, где есть стабилизация напряжения и ограничение тока заряда аккумулятора.

Описание работы зарядки

Стабилизация напряжения построена на базе довольно популярной микросхемы регулируемого стабилитрона tl431. Транзистор в качестве усилительного элемента. Ток заряда задается резистором R1 и зависит только от параметров заряжаемого аккумулятора. Этот резистор советуется с мощностью 1 ватт. А все остальные резисторы 0,25 или 0,125 ватт.

Как мы знаем, напряжение одной банки полностью заряженного литий-ионного аккумулятора составляет около 4,2 Вольт. Следовательно, на выходе зарядного устройства мы должны установить именно это напряжение, которое задается подбором резисторов R2 и R3. Существует очень много онлайн программ по расчету напряжения стабилизации микросхемы tl431.
Для наиболее точной настройки выходного напряжения советуется резистор R2 заменить на многооборотное сопротивление около 10 килоом. Кстати, возможно и такое решение. Светодиод у нас в роли индикатора заряда, подойдет практически любой светодиод, цвет на ваш вкус.
Вся настройка сводится к установке на выходе напряжения 4,2 вольта.
Несколько слов о стабилитроне tl431. Это очень популярная микросхемах,не путайте с транзисторами в аналогичном корпусе. Эта микросхема встречается практически в любом импульсном блоке питания, например компьютернаом, где микросхема чаще всего стоит в обвязке.
Силовой транзистор не критичен, подойдет любой транзистор обратной проводимости средней или высокой мощности, например из советских подойдут КТ819, КТ805. Из менее мощных КТ815, КТ817 и любые другие транзисторы с аналогичными параметрами.

Для каких аккумуляторов подходит устройство?

Схема предназначена для зарядки только одной банки литиевого аккумулятора. Можно заряжать акб стандарта 18 650 и иные аккумуляторы, только нужно выставить соответствующее напряжения на выходе из зарядника.
Если вдруг по каким-то причинам схема не заработает, то проверьте наличие напряжения на управляющем выводе микросхемы. Оно должна быть не менее 2,5 Вольт. Это минимальное рабочее напряжение для внешнего источника опорного напряжения микросхемы. Хотя встречаются варианты исполнения, где минимальное рабочее напряжение составляет 3 Вольта.
Целесообразно также построить небольшой тестовый стенд для указанной микросхемы, чтобы проверить ее на работоспособность перед пайкой. А после сборки тщательно проверяем монтаж.

В ещё одной публикации материал об улучшении .

Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то. Глядя на эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились.
Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, так как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.
В обзоре будет не очень много текста, но довольно много фотографий.

Но начну как всегда с того, как мне это пришло.
Пришло в комплекте с другими разными детальками, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением окончания заряда 4.2 Вольта.
Она умеет заряжать аккумуляторы током до 800мА.
Значение тока устанавливается изменением номинала внешнего резистора.
Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта).
При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже чем 1/10 от установленного, микросхема отключает заряд. Если напряжение упадет до 4.05 Вольта, то она опять перейдет в режим заряда.
Так же имеется выход для подключения светодиода индикации.
Больше информации можно найти в , у данной микросхемы существует гораздо более дешевый .
Причем он более дешевый у нас, на Али все наоборот.
Собственно для сравнения я и купил аналог.

Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обе - LTC4054.

Ну может так даже интереснее.
Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п.
А тут как раз товарищ попросил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов.
Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать.

Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.

Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.

Все это было распечатано, перенесено на обрезок текстолита.
Для экономии я сделал на обрезке еще одну плату, обзор с ее участием будет позже.

Ну и собственно изготовлена печатная плата и подобраны необходимые детали.

А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые позволяют выравнивать заряд на аккумуляторах.
Шучу, зарядное находится в блочке, включаемом в розетку, а здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумуляторам.
К родному зарядному вернемся позже.

Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.

Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых - процесс заряда.

Впаял в новую плату контакты с пружинками, а так же светодиоды.
Светодиоды удобно сначала вставить в плату, потом аккуратно установить плату на родное место, и только после этого запаять, тогда они будут стоять ровно и одинаково.



Плата установлена на место, припаян кабель питания.
Собственно печатная плата разрабатывалась под три варианта запитки.
2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель.
В данном случае я сначала не знал, какбель какой длины понадобится, потому запаял короткий.
Так же припаял провода, идущие к плюсовым контактам аккумуляторов.
Теперь они идут по раздельным проводам, для каждого аккумулятора свой.

Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне.
Соответственно сверху они будут расположены зеркально.

Сначала микруха с Али.
Ток заряда.

Теперь купленная в оффлайне.

Ток КЗ.
Аналогично, сначала с Али.

Теперь из оффлайна.



Налицо полная идентичность микросхем, что ну никак не может не радовать:)

Было замечено, что при 4.8 Вольта ток заряда 600мА, при 5 Вольт падает до 500, но это проверялось уже после прогрева, может так работает защита от перегрева, я еще не разобрался, но ведут себя микросхемы примерно одинаково.

Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает).
С самого начала я думал просто установить светодиод на индикацию включенного состояния.
Вроде все просто и очевидно.
Но как всегда захотелось большего.
Решил, что будет лучше, если во время процесса заряда он будет погашен.
Допаял пару диодов (vd1 и vd2 на схеме), но получил небольшой облом, светодиод показывающий режим заряда светит и тогда, когда нет аккумулятора.
Вернее не светит, а быстро мерцает, добавил параллельно клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно.
Это как раз тот гистерезис включения повторной зарядки, если напряжение упало ниже 4.05 Вольта.
В общем после этой доработки стало все отлично.
Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.

Аккумулятор полностью заряжен.

В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.

Не обошлось и без измерения температуры.
У меня получилось чуть более 62 градусов после 15 минут заряда.

Ну а вот так выглядит полностью готовое устройство.
Внешние изменения минимальны, в отличие от внутренних. Блок питания на 5 /Вольт 2 Ампера у товарища был, и довольно неплохой.
Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.

Ну а так выглядело родное зарядное. Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.

Резюме.
На мой взгляд, для микросхемы за 7 центов очень неплохо.
Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне.
Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов - Это не готовое устройство, потому придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть.

Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои конкретные условия.
Чуть не забыл, даташит, схема и трассировка -

Как правильно зарядить литий-ионный аккумулятор и зачем это вообще нужно? Наши современные устройства работают благодаря наличию источников автономного питания. И не важно, что это за приспособления: электрические смартфоны или ноутбуки. Именно поэтому так важно знать ответ на вопрос о том, как правильно зарядить литий-ионный аккумулятор.

Немного о том, что такое аккумулятор литиево-ионного типа

Источники автономного питания, которые применяются в современных смартфонах и других устройствах, принято подразделять на несколько разных групп. Их достаточно много. Взять те же Но именно в портативной технике, то есть в смартфонах и ноутбуках, чаще всего устанавливают батареи литиево-ионного типа (английское обозначение Li-Ion). Причины, которые привели к этому, имеют разную природу.

Плюсы этих видов аккумуляторов

В первую очередь следует отметить то, насколько просто и дешево обходится производство этих источников энергии. Дополнительными преимуществами их являются превосходные характеристики эксплуатации. Саморазрядные потери составляют очень малый показатель, и это тоже сыграло свою роль. А вот запас циклов для зарядки и разрядки очень и очень большой. Вкупе все это делает литиево-ионные аккумуляторы лидерами среди остальных аналогичных устройств именно в сфере применения их в смартфонах и ноутбуках. Хотя исключения из правил существуют, они составляют порядка 10 процентов от общего числа случаев. Именно поэтому множество пользователей задает вопрос о том, как правильно зарядить литий-ионный аккумулятор.

Важные и интересные факты

Аккумулятор для смартфона имеет свои специфические особенности. Поэтому нужно знать определенные правила и быть ознакомленным с соответствующими инструкциями еще до того, как начинать заниматься процессом принудительной зарядки или разрядки. Следует отметить в первую очередь, что большинство аккумуляторов такого типа специально оснащают дополнительным устройством контроля. Его применение обусловлено необходимостью удержания заряда на определенном уровне (который также называют критическим). Таким образом, устройство контроля, встроенное, в том числе, и в аккумулятор для смартфона, не дает нам переступить ту роковую черту, после которой батарея просто-напросто “сдохнет”, как любят выражаться специалисты-сервисники. С точки зрения физики, все выглядит следующим образом: при обратном процессе (критическая разрядка) напряжение литий-ионного аккумулятора просто падает к нулю. Параллельно блокируется поступление тока.

Как правильно заряжать цифровую технику на основе этого источника автономной работы

Если ваш смартфон работает за счет литиево-ионного аккумулятора, то само устройство необходимо ставить на зарядку, когда показатель батареи высветит примерно такие цифры: 10-20 процентов. То же самое справедливо и для фаблетов, и для планшетных компьютеров. Это есть краткий ответ на вопрос о том, как правильно зарядить литий-ионный аккумулятор. Следует добавить, что даже при достижении 100-процентного номинального заряда устройство нужно держать подключенным к электрической сети в течение еще одного-двух часов. Дело в том, что аппараты неверно интерпретируют зарядку, и 100 процентов, которое выдает смартфон или планшет, по факту есть не более 70-80 процентов.

Если ваш аппарат оснащен литиево-ионным аккумулятором, вы должны знать некоторые тонкости его работы. Это будет очень полезно в будущем, поскольку, следуя им, вы сможете продлить срок службы не только этого элемента, но и всего устройства в целом. Так вот, запомните, один раз в три месяца нужно проводить полную разрядку аппарата. Делается это в профилактических целях.

А вот о том, как заряжать разряженный аккумулятор, мы поговорим позднее. Сейчас же просто укажем, что стационарный компьютер и ноутбук не способны обеспечить достаточно высокое напряжение при подключении мобильного аппарата к этим чудесам техники посредством порта стандарта USB. Соответственно, для того чтобы полностью зарядить аппарат от этих источников, потребуется большее количество времени. Интересно то, что срок службы литиево-ионного аккумулятора может продлить одна методика. Она заключается в чередовании циклов зарядки. То есть, один раз вы заряжаете устройство полностью, на все 100 процентов, второй раз - не полностью (80 - 90 процентов). И вот эти два варианта чередуются по очереди. В таком случае можно использовать для литий-ионных аккумуляторов.

Правила использования

В общем-то, литиево-ионные источники питания можно назвать неприхотливыми. Мы уже разговаривали на эту тему и выяснили, что эта характеристика, наряду с другими, стала причиной настолько широкого их распространения в вычислительной технике. Тем не менее, даже столь умная архитектура аккумуляторов не дает полной гарантии их долгосрочной работы. Зависит этот срок в первую очередь от человека. А ведь от нас не требуется делать что-то запредельное. Если пять простых правил, которые мы можем запомнить навсегда, применять их успешно. В таком случае литиево-ионный источник питания прослужит вам очень и очень долго.

Правило первое

Оно заключается в том, что не нужно полностью. Уже говорилось о том, что подобную процедуру следует проводить только один раз в три месяца. Современные конструкции этих источников питания не несут в себе “эффекта памяти”. Собственно, поэтому лучше успеть поставить аппарат на зарядку еще до того, как он полностью “сядет”. Кстати, весьма примечателен тот факт, что некоторые производители соответствующей продукции измеряют срок службы изделий в количествах циклов. Продукция высшего класса способна “пережить” порядка шести сотен циклов.

Правило второе

Оно гласит, что мобильному устройству нужна полная разрядка. Ее следует осуществлять раз в три месяца в целях профилактики. Напротив, нерегулярная и нестабильная зарядка способна сдвинуть номинальные отметки минимального и максимального заряда. Таким образом, аппарат, в который встроен этот источник автономной работы, начинает получить неправдивые сведения о том, сколько на самом деле осталось энергии. А это, в свою очередь, приводит к неправильным расчетам энергопотребления.

Профилактическая разрядка призвана предотвратить это. Когда она произойдет, схема управления автоматически обнулит минимальное значение заряда. Однако тут есть свои хитрости. Например, после полной разрядки необходимо “забить под завязку” источник питания, продержав его дополнительно порядка 12 часов. Кроме обыкновенной электрической сети и провода, для зарядки нам в этом деле больше ничего не понадобится. Зато работа аккумулятора после профилактической разрядки станет стабильнее, и вы сможете это сразу заметить.

Правило третье

Если вы не используете свой аккумулятор, за его состоянием все равно нужно следить. При этом температура в том помещении, где вы его храните, желательно должна быть не больше и не меньше 15 градусов. Понятно, что достичь ровно такой цифры не всегда получается, но все же, чем меньше отклонение от этого значения, тем будет лучше. Следует отметить, что сам аккумулятор должен быть заряжен на 30-50 процентов. Подобные условия позволят продержать источник питания без серьезного ущерба достаточно долго. Почему же не следует его полностью заряжать? А потому что “забитый под завязку” аккумулятор в силу физических процессов теряет достаточно большую часть своей емкости. Если же источник питания хранится долгое время в разряженном состоянии, то он становится практически бесполезным. И единственное место, где он действительно пригодится, это мусорка. Единственный путь, хоть и маловероятный, это восстановление литий-ионных аккумуляторов.

Правило четвертое

Цена на который попадает в интервал от нескольких сотен до нескольких тысяч рублей, следует заряжать только при помощи оригинальных устройств. Это в меньшей степени относится к мобильным устройствам, поскольку в их комплектацию (если вы покупаете их в официальном магазине) уже включены адаптеры. Но они в этом случае только стабилизируют подаваемое напряжение, а зарядное устройство, по сути дела, уже встроено в ваш девайс. Что, кстати, нельзя сказать о видеокамерах и фотоаппаратах. Именно об этом идет речь, тут использование сторонних устройств при зарядке аккумуляторов может нанести заметный вред.

Правило пятое

Следите за температурой. Литиево-ионные аккумуляторы могут сопротивляться тепловой нагрузке, но перегрев для них губителен. Да и низкие температуры для источника питания - это не самое лучшее, что может быть. Хотя большая опасность исходит именно от процесса перегрева. Помните о том, аккумулятор не должен подвергаться воздействию прямых солнечных лучей. Диапазон температур и их допустимых значений начинается на - 40 градусах и заканчивается на + 50 градусах по шкале Цельсия.


Наверняка, каждый радиолюбитель сталкивался с проблемой, подключая литиевые аккумуляторы последовательно, замечал что один садиться быстро а другой еще вполне держит заряд, но из за другого севшего вся батарея не выдает нужного напряжения. Это происходит от того что при зарядке всего блока батарей, они заряжаются не равномерно, и часть батарей набирают полную емкость а часть нет. Это приводит не только к быстрому разряду, но и к выходу из строя отдельных элементов, из за постоянной не до зарядки.
Исправить проблему достаточно просто, на каждый аккумуляторный элемент нужен так называемый балансир, устройство которое после полной зарядки батареи блокирует ее дальнейший перезаряд, и управляющим транзистором обводит зарядный ток мимо элемента.
Схема балансира достаточно проста, собрана на прецизионном управляемом стабилитроне TL431A, и транзисторе прямой проводимости BD140.


После долгих экспериментов схема немного изменилась, в место резисторов было установлено 3 последовательно включенных диода 1N4007, работать балансир стал как по мне стабильней, диоды при зарядке ощутимо греются, это следует учитывать при разводке платы.


Принцип работы очень прост, пока напряжение на элементе меньше 4,2 вольта, идет зарядка, управляемый стабилитрон и транзистор закрыты и не влияют на процесс зарядки. Как только напряжение достигнет 4,2 вольта, стабилитрон начинает открывать транзистор, который через резисторы суммарным сопротивлением 4 Ома шунтирует аккумулятор, тем самым не давая напряжению подняться выше верхнего порога 4,2 вольта, и дает возможность зарядиться остальным аккумуляторам. Транзистор с резисторами спокойно пропускает ток около 500 мА, при этом он нагревается градусов до 40-45. Как только на балансире загорелся светодиод аккумулятор который к нему подключен полностью заряжен. То есть, если у вас соединено 3 аккумулятора, то окончанием заряда нужно считать загорание светодиодов на всех трех балансирах.
Настройка очень проста, подаем на плату (без аккумулятора) напряжение 5 вольт через резистор примерно 220 Ом, и меряем на плате напряжение, оно должно быть 4,2 вольта, если оно отличается то подбираем резистор 220 кОм в небольших пределах.
Напряжение для зарядки нужно подавать примерно на 0,1-0,2 вольта больше чем напряжение на каждом элементе в заряженном состоянии, пример: у нас 3 последовательно соединенных аккумулятора по 4,2 вольта в заряженном состоянии, суммарное напряжение 12,6 вольта. 12,6 + 0,1 + 0,1 + 0,1 = 12,9 вольта. Также следует ограничит ток заряда на уровне 0,5 А.
Как вариант стабилизатора напряжения и тока можно использовать микросхему LM317, включение стандартное с даташита, схема выглядит следующим образом.


Трансформатор нужно выбирать с расчета - напряжение заряженной батареи + 3 вольта по переменке, для корректной работы LM317. Пример у вас батарея 12,6 вольта + 3 вольт = трансформатор нужен 15-16 вольт переменного напряжения.
Так как LM317 линейный регулятор, и падение напряжения на нем превратится в тепло, обязательно устанавливаем ее на радиатор.
Теперь немного о том как рассчитать делитель R3-R4 для стабилизации напряжения , а очень просто по формуле R3+R4=(Vo/1.25-1)*R2 , величина Vo - это напряжение окончания заряда (максимальное выходное после стабилизатора).
Пример: нам нужно получить на выходе 12,9 вольта для 3-х. батарей с балансирами. R3+R4=(12.9/1.25-1)*240=2476,8 Ом. что примерно ровняется 2,4 кОм + у нас стоит подстроечный резистор, для точной подстройки (470 Ом), что позволит нам, без проблем установить расчетное выходное напряжение.
Теперь расчет выходного тока, за него отвечает резистор Ri, формула простая Ri=0.6/Iз , где Iз - максимальный ток заряда. Пример нам нужен ток 500 мА, Ri=0.6/0,5А= 1,2 Ом. Следует учитывать, что через данный резистор течет зарядный ток, потому мощность его стоит брать 2 Вт. Вот и все, платы я не выкладываю, они будут когда я соберу зарядное устройство с балансиром для своего металлоискателя.

Собираем простое зарядное для Литий-ионных аккумуляторов, практически из хлама.


Накопилось у меня большое количество аккумуляторов от ноутбучных аккумуляторов, формата 18650. Обдумывая как их заряжать, я решил не заморачиваться с китайскими модулями, да и закончились они у меня к тому времени. Решил собрать воедино две схемы. Датчик тока и плата BMS с аккумулятора мобильного телефона. Проверено на практике. Хоть и схема примитивная, но она работает и успешно, ни одного аккумулятора не пострадало.

Схема зарядного устройства

Материалы и инструменты

  • шнур USB;
  • крокодильчики;
  • плата защиты BMS;
  • пластиковое яйцо от киндера;
  • два светодиода разного цвета;
  • транзистор кт361;
  • резисторы на 470 и 22 ома;
  • двухватный резистор 2.2 ома;
  • один диод IN4148;
  • инструменты.

Изготовление зарядного устройства

Шнур USB разбираем и снимаем разъем. У меня это от какого-то аипада.


К крокодилам припаиваем провода.


Глубокую часть пластикового киндера утяжеляем, я залил гайку М6 термоклеем.


Спаиваем нашу простую схемку. Все сделано навесным монтажом и распаяно на плате BMS. Светодиод я применил сдвоенный, но можно два одноцветных. Транзистор выпаял из старой советской радио-аппаратуры.


Провода продеваем в отверстие второй, мелкой, половинке пластикового киндера. Припаиваем схему.


Все компактно запихиваем в пластиковое яйцо. Для светодиода делаем отверстие.


Подключаем к USB порту пк или китайской зарядке, у них тока все равно мало.
Во время зарядки горит оранжевым цвет. Т.е. горят оба светодиода.

Когда заряд окончен, горит зеленый, тот который подключен через диод IN4148.
Можно проверить схему, отключив от аккумулятора, загорится светодиод зеленого цвета, свидетельствующий об окончании заряда.

просмотров