Устройство механической коробки переключения передач. Устройство механической коробки передач

Устройство механической коробки переключения передач. Устройство механической коробки передач

Механическая трансмиссия автомобиля предназначена для изменения крутящего момента и передачи его от двигателя к колесам. Она отсоединяет двигатель от ведущих колес машины. Объясним из чего состоит механическая коробка передач - как работает.

Механическая «коробка» автомобиля состоит из :
  • картера;
  • первичного, вторичного и промежуточного валов с шестернями;
  • дополнительного вала и шестерни заднего хода;
  • синхронизаторов;
  • механизма переключения передач с замковым и блокировочным устройствами;
  • рычага переключения.

Схема работы: 1 - первичный вал; 2 - рычаг переключения; 3 - механизм переключения; 4 - вторичный вал; 5 - сливная пробка; 6 - промежуточный вал; 7 - картер.

Картер содержит основные детали трансмиссии. Он крепится к картеру сцепления, который закреплен на двигателе. Т.к. при работе шестерни испытывают большие нагрузки, они должны хорошо смазываться. Поэтому картер наполовину своего объема залит трансмиссионным маслом .

Валы вращаются в подшипниках, установленных в картере. Они имеют наборы шестерен с различным числом зубьев.

Синхронизаторы необходимы для плавного, бесшумного и безударного включения передач, путем уравнивания угловых скоростей вращающихся шестерен.

Механизм переключения служит для смены передач в коробке и управляется водителем с помощью рычага из салона авто. При этом замковое устройство не позволяет включаться одновременно двум передачам, а блокировочное устройство удерживает их от самопроизвольного выключения.

Требования к коробке передач

  • Обеспечение наилучших тяговых и топливно-экономических свойств
  • высокий КПД
  • легкость управления
  • безударное переключение и бесшумность работы
  • невозможность включения одновременно двух передач или заднего хода при движении вперед
  • надежное удержание передач во включенном положении
  • простоту конструкции и небольшую стоимость, малые размеры и массу
  • удобство обслуживания и ремонта
Чтобы удовлетворить первое требование, необходимо правильно выбрать число ступеней и их передаточные числа. При увеличении числа ступеней обеспечивается лучший режим работы двигателя с точки зрения динамичности и экономии топлива. Но усложняется конструкция, возрастают габаритные размеры, масса трансмиссии.

Легкость управления зависит от способа переключения передач и типа привода. Передачи переключают с помощью подвижных шестерен, зубчатых муфт, синхронизаторов, фрикционных или электромагнитных устройств. Для безударного переключения устанавливают синхронизаторы, которые усложняют конструкцию, а также увеличивают размеры и массу трансмиссии. Поэтому наибольшее распространение получили те, в которых высшие передачи переключают синхронизаторами, а низшие - зубчатыми муфтами.

Как работают шестерни?

Разберемся на примере как происходит изменение величины крутящего момента (числа оборотов) на различных передачах.


а) Передаточное отношение одной пары шестерен
Возьмем две шестерни и сосчитаем число зубьев. Первая шестеренка имеет 20 зубьев, а вторая 40. Значит при двух оборотах первой шестерни, вторая сделает только один оборот (передаточное число равно 2).


б) Передаточное отношение двух шестерен
На рисунке б) у первой шестерни («А») 20 зубьев, у второй («Б») 40, у третьей («В») - 20, у четвертой («Г») - 40. Дальше простая арифметика. Первичный вал и шестерня «А» вращаются со скоростью 2000 об/мин. Шестерня «Б» вращается в 2 раза медленнее, т.е. она имеет 1000 об/мин, а т.к. шестерни «Б» и «В» закреплены на одном валу, то и третья шестеренка делает 1000 об/мин. Тогда шестерня «Г» будет вращаться еще в 2 раза медленнее - 500 об/мин. От двигателя на первичный вал приходит - 2000 об/мин, а выходит - 500 об/мин. На промежуточном валу в это время - 1000 об/мин.

В данном примере передаточное число первой пары шестерен равно двум, второй пары шестерен тоже - двум. Общее передаточное число этой схемы 2х2=4. То есть в 4 раза уменьшается число оборотов на вторичном валу, по сравнению с первичным. Обратите внимание, что если выведем из зацепления шестерни «В» и «Г», то вторичный вал вращаться не будет. При этом прекращается передача крутящего момента и на ведущие колеса авто, что соответствует нейтральной передаче.

Задняя передача, т.е. вращение вторичного вала в другую сторону , обеспечивается дополнительным, четвертым валом с шестерней заднего хода. Дополнительный вал необходим, чтобы получилось нечетное число пар шестерен, тогда крутящий момент меняет направление:

Схема передачи крутящего момента при включении задней передачи: 1 - первичный вал; 2 - шестерня первичного вала; 3 - промежуточный вал; 4 - шестерня и вал передачи заднего хода; 5 - вторичный вал.

Передаточные числа

Поскольку в «коробке» имеется большой набор шестерен, то вводя в зацепление различные пары, мы имеем возможность менять общее передаточное отношение. Давайте посмотрим на передаточные числа:
Передачи ВАЗ 2105 ВАЗ 2109
I 3,67 3,636
II 2,10 1,95
III 1,36 1,357
IV 1,00 0,941
V 0,82 0,784
R(Задний ход) 3,53 3,53

Такие числа получаются, в результате деления количества зубьев одной шестерни на делимое число зубьев второй и далее по цепочке. Если передаточное число равно единице (1,00), то это означает, что вторичный вал вращается с той же угловой скоростью, как первичный. Передачу, на которой скорость вращения валов уравнена, обычно называют – прямой . Как правило, это - четвертая. Пятая (или высшая) имеет передаточное число меньше единицы. Она нужна для езды по трассе с минимальными оборотами двигателя.

Первая и передача заднего хода - самые «сильные». Двигателю не трудно крутить колеса, но машина в этом случае движется медленно. А при движении в гору на «шустрых» пятой и четвертой передачах мотору не хватает сил. Поэтому приходится переключаться на более низкие, но «сильные» передачи.

Первая передача необходима для начала движения , чтобы двигатель смог сдвинуть с места тяжелую машину. Далее, увеличив скорость и сделав некоторый запас инерции, можете переключиться на вторую передачу, более «слабую», но более «быструю», затем на третью и так далее. Обычный режим движения – на четвертой (в городе) или пятой (на трассе) - они самые скоростные и экономичные.

Какие бывают неисправности?

Обычно они появляются в результате грубой работы с рычагом переключения. Если водитель постоянно «дергает» рычаг, т.е. переводит его из одной передачи в другую быстрым, резким движением - это приведёт к ремонту. При таком обращении с рычагом, обязательно выйдут из строя механизм переключения или синхронизаторы.

Рычаг переключения переводится спокойным плавным движением, с микропаузами в нейтральной позиции, чтобы сработали синхронизаторы, оберегающие шестерни от поломок. При грамотном обращении с ним и периодической замене масла в «коробке», она не сломается до конца срока службы.

Шум при работе, зависящий в основном от типа установленных шестерен, значительно уменьшается при замене прямозубых шестерен косозубыми. Правильная работа также зависит от обслуживания в срок.

Коробка передач служит для изменения тяговой силы на колесах автомобиля в зависимости от сопротивления движению и дает автомобилю возможность двигаться задним ходом. Коробка передач позволяет, кроме того, при выключении передач отсоединять ведущие колеса автомобиля от двигателя, обеспечивая тем самым возможность запуска двигателя и его работу на холостом ходу.

Коробка передач представляет собой механизм, состоящий из набора шестерен, которые могут вводиться в зацепление в различных сочетаниях.

Каждое сочетание зацепления шестерен коробки называется ступенью или передачей. Число ступеней (передач) в коробке передач зависит от конструкции автомобиля и обычно бывает от трех до пяти (не считая передачи заднего хода). В соответствии с этим коробки передач называются трехступенчатыми, четырехступенчатыми и пятиступенчатыми.

Рис. Коробка передач автомобилей ГАЗ-69 и ГАЗ-69А: 1 - сальник; 2 - задняя крышка картера; 3 - шарикоподшипник вторичного вала; 4 - картер коробки передач; 5 - маслоотражательное кольцо; 6 - вторичный вал; 7 - вилка переключения шестерни (каретки) первой передачи и заднего хода; 8 - шестерня (каретка) первой передачи и заднего хода; 9 - рычаг переключения передач; 10 - верхняя крышка картера; 11 - шестерня второй передачи; 12 - втулка шестерни второй передачи; 13 - зубчатый венец шестерни второй передачи; 14 - каретка второй и третьей передач; 15 - вилка каретки второй и третьей передач; 16 - зубчатая ступица; 17 - регулировочные прокладки; 18 - упорное кольцо; 19 - зубчатый венец шестерни третьей передачи; 20 - шестерня третьей передачи; 21 - роликоподшипник; 22 - шарикоподшипник первичного вала; 23 - первичный вал; 24 - передняя крышка картера; 25 - маслоотражательное кольцо; 26 - роликоподшипник промежуточного вала; 27, 29, 32 и - шестерни промежуточного вала; 28 - пробка сливного отверстия картера; 30 - ось промежуточного вала; 31 - промежуточный вал; 34 - промежуточная шестерня заднего хода

Зацепление различных пар шестерен осуществляется при помощи кареток (шестерен), передвигаемых вдоль валов коробки. В зависимости от числа подвижных кареток коробки разделяются на двухходовые (две каретки) и трехходовые (три каретки).

Принцип работы автомобильных коробок передач

Принцип работы автомобильных коробок передач независимо от их конструктивного оформления и числа передач одинаков. Рассмотрим их устройство и работу на примере трехступенчатой двухходовой коробки передач автомобилей ГАЗ-69А и ГАЗ-69.

Первичный (ведущий) вал 23 выполнен заодно с шестерней 20 третьей передачи и с зубчатым венцом 19. Первичный вал через сцепление соединяется с коленчатым валом двигателя.

Вторичный (ведомый) вал 6 является как бы продолжением первичного вала и расположен с ним на одной оси. Хвостовик вторичного вала сидит в роликоподшипнике 21, установленном в конце первичного вала. Вторичный вал вследствие этого может вращаться независимо от первичного.

На вторичном валу установлены две шестерни 8 и 11 и зубчатая ступица 16. Шестерня 8 (каретка) сидит на валу на шлицах и может перемещаться вдоль его оси. Шестерня 11 имеет зубчатый венец 13. Она посажена на вторичном валу на бронзовой втулке 12, поэтому свободно вращается на валу. На ступице установлена каретка 14 второй и третьей передач, которая перемещается по ступице.

Промежуточный вал 31 представляет- собой блок шестерен 27, 29, 32 и 33, свободно вращающийся на оси 30.

Промежуточная шестерня 34 заднего хода посажена на ось на бронзовой втулке и свободно вращается на оси.

Первичный и вторичный валы установлены в гнездах картера коробки на шарикоподшипниках 22 и 3. Ось 30 промежуточного вала закрепляется в гнездах картера неподвижно, промежуточный же вал 31 вращается на оси на роликоподшипниках 26. Ось промежуточной шестерни заднего хода неподвижно закреплена в специальных гнездах картера.

Шестерня 20 первичного вала с шестерней 27 промежуточного вала, а также шестерня 33 с промежуточной шестерней 34 заднего хода находятся в постоянном зацеплении. В постоянном зацеплении находятся также шестерня 29 промежуточного вала и шестерня 11 вторичного вала. Каретки 8 и 14 могут перемещаться по вторичному валу и вводиться в зацепление: каретка 14 своими внутренними зубьями с зубчатым венцом 19 шестерни 20 первичного вала или с зубчатым венцом 13 шестерни 11; каретка 8 с шестерней 32 или 34.

При положении кареток, изображенном на рисунке, крутящий момент от двигателя будет передаваться с первичного вала через шестерни 20 и 27 на блок шестерен промежуточного вала.

Однако на вторичный вал крутящий момент передаваться не будет, так как при изображенном положении кареток 8 и 14 вторичный вал разобщен как с первичным, так и с промежуточным валами. Такое положение кареток называется нейтральным. В нейтральное положение каретки ставятся при запуске двигателя и работе двигателя на холостом ходу (на месте или при движении автомобиля накатом).

Рис. Схема включения шестерен и передачи крутящего момента в трехступенчатой коробке передач автомобилей ГАЗ-69 и ГАЗ-69А: а - первая передача; б - вторая передача; в - третья передача; г - задний ход; I — положение рычага при включении первой передачи; II - положение рычага при включении второй передачи; III - положение рычага при включении третьей передачи; IV - положение рычага при включении заднего хода

Чтобы привести автомобиль в движение, надо передать крутящий момент вторичному валу. Для этого каретку 8 или 14 следует ввести в зацепление с одной из шестерен промежуточного вала, при котором обеспечивалось бы получение наибольшего передаточного отношения, а следовательно, и наибольшего крутящего момента на вторичном валу. Передвинем каретку 8 вправо и введем ее в зацепление с шестерней 32 промежуточного вала, как это показано на рис. а. Такое положение кареток соответствует первой передаче.

Чтобы включить вторую передачу, необходимо вывести каретку 8 из зацепления с шестерней 32, а затем, передвинув (по рис. б влево) каретку 14, ввести последнюю в зацепление с зубчатым венцом 13 шестерни 11, постоянно находящейся в зацеплении с шестерней 29 промежуточного вала.

Переходить со второй передачи на третью нужно в той же последовательности, что и с первой передачи на вторую. При этом каретка 14 выводится из зацепления с зубчатым венцом 13 шестерни 11 и вводится в зацепление с зубчатым венцом 19 шестерни 20 первичного вала (рис. в), первичный и вторичный валы начинают вращаться как одно целое.

Для движения задним ходом следует перевести обе каретки в нейтральное положение, а затем каретку 8 передвинуть влево и ввести в зацепление с промежуточной шестерней 34 заднего хода. При этом направление вращения вторичного, вала изменится на обратное.

Для легкого и безударного переключения передач необходимо, чтобы окружные скорости шестерен, вводимых в зацепление, были одинаковы. Окружная скорость шестерни зависит от числа оборотов вала, на котором она сидит, и от ее диаметра: чем больше диаметр шестерни и число оборотов вала, тем больше ее окружная скорость. Для облегчения безударного переключения передач и уменьшения износа зубьев шестерен в коробках передач, в частности в коробке передач автомобилей ГАЗ-69А и ГАЗ-69, предусмотрено специальное устройство - синхронизатор каретки включения второй и третьей передач.

Синхронизатор выравнивает окружные скорости вращения шестерен перед вводом их в зацепление. Устроен он следующим образом. На конце вторичного вала 1 установлена на шлицах и закреплена стопорным кольцом 14 зубчатая ступица 6 синхронизатора. На наружных зубьях ступицы установлена каретка 10 второй и третьей передач, охватываемая вилкой 8. В трех пазах ступицы установлены ползуны 11 блокирующего устройства, соединяемые при помощи шариков 9 фиксаторов с кареткой 10. По обеим сторонам ступицы расположены блокирующие бронзовые кольца 4. Каждое блокирующее кольцо имеет зубчатый венец и пазы 47 для ползунов; внутренняя поверхность кольца выполнена конусообразной.

Синхронизатор расположен между зубчатым венцом 13 шестерни 15 первичного вала и зубчатым венцом 3 шестерни 2 второй передачи. Основания зубчатых венцов шестерен 2 и 15 имеют конусные поверхности.

Рис. Устройство и схема работы синхронизатора коробки передач: а - положение деталей синхронизатора при Выравнивании окружных скоростей; б - положение деталей синхронизатора при включенной передаче; в - детали синхронизатора; 1 - вторичный вал коробки передач; 2 - шестерня второй передачи; 3 - зубчатый венец шестерни второй передачи; 4 - блокирующее кольцо; 5 - упорная шайба; 6 - зубчатая ступица; 7 — пружина; 8 - вилка каретки второй и третьей передач; 9 - шарик фиксатора; 10 - каретка второй и третьей передач; 11 - ползун; 12 - регулировочные прокладки; 13 - зубчатый венец шестерни первичного вала; 14 - стопорное кольцо зубчатой ступицы; 15 - шестерня первичного вала; 16 - первичный вал; 17 - паз для ползуна ступицы

При включении второй или третьей передачи каретка 10 синхронизатора при помощи переключающего устройства перемещается вместе с ползунами 11 по ступице 6. Ползуны, входящие в пазы 17 блокирующих колец 4, прижимают кольцо к конусной поверхности соответствующего зубчатого венца шестерни. Вследствие трения, возникающего между соприкасающимися конусными поверхностями, блокирующее кольцо немного сдвигается в сторону вращения зубчатого венца до упора пазов в боковые поверхности ползунов. При этом скошенная поверхность.торцов зубьев каретки 10, упираясь в скошенную поверхность торцов зубьев кольца 4, не дает зубьям войти в зацепление, вследствие чего обеспечивается сильное прижатие кольца 4 к конусной поверхности зубчатого венца. В результате сильного трения конусов скорости вращения валов уравниваются, каретка 10 сдвигается дальше, выжимая шарики 9 фиксаторов, и своими зубьями входит в промежутки зубьев венца 13, бесшумно включая соответствующую передачу.

Управление коробкой передач осуществляется при помощи рычага 6; качающегося в шаровой опоре крышки картера коробки передач.

В той же крышке в гнездах установлены, два ползуна 3 и 12, которые могут перемещаться вдоль своих осей, скользя при этом в гнездах крышки коробки. Каждый из этих ползунов соединен с вилкой: ползун 12 каретки первой передачи и заднего хода с вилкой 11, ползун 3 каретки второй и третьей передач с вилкой 10.

Концы вилок вмещаются в кольцевых проточках, имеющихся в каретках, и не мешают кареткам свободно вращаться вместе со вторичным валом. При продольном же перемещении вилок, каретки передвигаются вдоль вала и тем самым вводят в зацепление соответствующие шестерни. Посредством перемещения рычага, а следовательно, и вилок с каретками происходит переключение передач в коробке.

Для предотвращения произвольного выключения передач и одновременного включения нескольких передач в механизме переключения передач предусмотрены специальные устройства фиксаторы (стопоры) - для фиксирования рычага в определенном положении и замки, не позволяющие одновременно включать несколько передач.

В трехступенчатых коробках передач с двумя ползунами фиксатор одновременно выполняет и роль замка.

Рис. Механизм переключения передач коробки передач автомобилей ГАЗ-60 и ГАЗ-69А: 1 - пружина фиксатора; 2 - боковая крышка картера коробки передач; 3 - ползун вилки каретки второй и третьей передач; 4 - отжимная скоба; 5 - пружина отжимной скобы; 6 - рычаг переключения передач; 7 - пружина рычага переключения передач; 8 - колпак; 9 - шаровая опора; 10 - вилка каретки второй и третьей передач; 11 - вилка каретки первой передачи и заднего хода; 12 - ползун вилки каретки первой передачи и заднего хода; 13 - сухари фиксатора

Фиксатор состоит из двух полых сухарей 13, скользящих в специальном гнезде, сделанном в крышке коробки передач. Под действием пружины 1 сухари заскакивают в углубления, имеющиеся в соответствующих местах ползунов. Сухари надежно удерживают ползуны от самопроизвольного перемещения, а также предотвращают возможность одновременного перемещения, обоих ползунов.

Передвинуть оба ползуна сразу и включить, таким образом, одновременно две передачи нельзя по следующей причине. Как только один из ползунов передвинется настолько, что сухарь выйдет из углублений, оба сухаря окажутся придвинутыми друг к другу вплотную. Общая длина сдвинутых сухарей подобрана так, что второй сухарь уже не сможет выйти из углубления примыкающего к нему ползуна и тем самым надежно заперт ползун.

Чтобы не произошло случайное включение заднего хода, в крышке коробки передач, несколько ниже шаровой опоры, расположена отжимная скоба 4 с пружиной 5, нажимающей на конец рычага 6. Поэтому для включения заднего хода (и первой передачи) к рычагу нужно приложить повышенное усилие, чтобы отвести скобу в сторону.

В картер коробки передач заливается до уровня отверстия контрольной пробки.

) представляет собой одно из самых распространенных устройств, способное изменять крутящие моменты двигателя. Данная коробка передач получила свое название в связи с механическим (ручным) способом переключения передач.

Механическую коробку передач относят к ступенчатым коробкам, так как крутящие моменты в ней изменяются с помощью ступеней. Ступенью называют пару взаимодействующих шестерен. Каждая из этих ступеней обеспечивает функцию вращения, имеющую определенную угловую скорость, или другими словами определенное передаточное число.

Передаточное число – это отношение числа зубьев главной шестерни, к определенному числу зубьев ведущей шестерни. Таким образом, различные ступени механической коробки передач могут иметь различные передаточные числа. Низкая передаточная ступень имеет большое передаточное число, а высшая – наименьшее число.

Конструкции коробки передач различают в зависимости от числа ступеней. Конструкция коробки передач может быть четырех, пяти, шести ступенчатой. Практически все современные автомобили оснащены пятиступенчатой коробкой передач.

Так же из большого разнообразия механических коробок передач выделяют два основных вида коробок передач:

  • трехвальную коробку передач (производители устанавливают на заднеприводный автомобиль),
  • и двухвальную коробку передач (используется на легковых автомобилях с передним приводом). Принцип работы и конструкция данных коробок также имеют большие различия, поэтому они будут рассмотрены отдельно.

Трехвальная коробка передач состоит из следующих деталей:

  • первичного (ведущего) вала;
  • шестерни ведущего вала;
  • промежуточного вала;
  • вторичного (ведомого вала);
  • муфты синхронизаторов;
  • картера (корпуса коробки передач).

Функции основных составляющих деталей механической коробки передач.

Ведущий вал выполняет соединение со сцеплением. На ведущем валу расположены шлицы необходимые для ведомого диска сцепления. От ведущего вала через шестерню передается крутящий момент.

Промежуточный вал находится параллельно первичному валу. На промежуточном валу расположен блок шестерен, также расположенный с ним в зацеплении.

Ведомый вал находится рядом с ведущим валом на одной оси. Технический процесс производится с помощью торцевого подшипника расположенного на ведущем валу. При этом блок шестерен расположенный на ведомом валу, как правило, не закрепляется с валом, таким образом, осуществляет свободное вращение на нем. Блок шестерен ведомого и промежуточного вала и шестерня промежуточного вала работают в постоянном зацеплении.

Муфты синхронизаторов расположены между определенными шестернями ведомого вала. Действия синхронизаторов основаны на совмещаемости угловых скоростей ведомого вала, с угловыми скоростями самого вала при помощи силы трения. Данные муфты могут иметь крепкое зацепление с ведомым валом, и двигаются по ведомому валу в продольном направлении при помощи шлицевого соединения. Далее, на торцах муфты расположены зубчатые венцы, входящие в соединение с зубчатыми венцами блока определенных шестерен ведомого вала. Практически все современные коробки передач оснащены синхронизаторами, устанавливаемыми на всех передачах.

Механизм (устройство) переключения трехвальной коробки находится на корпусе коробки. Данный механизм состоит из рычага управления, а также ползуны с вилками. Механизм переключения имеет блокирующее устройство, которое предотвращает одновременное включение двух или трех передач. Также данный механизм может оснащаться дистанционным управлением.

Картер коробки передач содержит конструктивные части и механизмы, а также предназначается для хранения масла. Картер может изготавливаться из магниевого или алюминиевого сплава.

Схема работы трехвальной коробки передач

В момент нахождения рычага в нейтральном положении на ведущие колеса не передается крутящий момент. Во время перемещения рычага управления необходимая вилка производит перемещение муфты синхронизатора. Данная муфта синхронизирует угловые скорости ведущего вала и необходимой шестерни. После синхронизации зубчатые венцы муфты заходят в зацепление с зубчатыми венцами шестерни, таким образом, обеспечивая блокировку шестерни на ведомом валу. Функцией коробки передач является передача крутящего момента с определенным передаточным числом на ведущие колеса от двигателя.

Также коробка передач обеспечивает выполнение движения автомобиля задним ходом. Смена направления вращений производиться с помощью шестерни заднего хода, которая устанавливается на отдельной оси.

Состав двухвальной коробки передач .

Двухвальная коробка передач состоит из следующих деталей:

  • ведущего вала;
  • блока шестерен ведущего вала;
  • вторичного вала;
  • блока шестерен вторичного вала;
  • муфты синхронизаторов;
  • главной передачи;
  • дифференциала;
  • механизма переключения передач;
  • картера коробки передач.

Устройство двухвальной коробки передач

Основные функции в двухвальной коробке передач выполняет ведущий вал, на котором крепко зафиксирован блок шестерен. Именно ведущий вал производит соединение со сцеплением.

На одной оси с ведущим валом располагается ведомый вал с определенным блоком шестерен. Данные шестерни обеспечивают постоянное зацепление с шестернями ведущего вала, и могут вращаться на валу без каких-либо препятствий. Также на ведомом валу крепко зафиксирована ведущая шестерня. Между этими шестернями находятся муфты синхронизаторов.

Для того чтобы уменьшить линейные размеры и увеличить число ступеней в коробке, вместо одного вала иногда устанавливают два или три ведомых вала. Каждый вал имеет крепко зафиксированную шестерню главной передачи. Данная шестерня обеспечивает зацепление с ведомой шестерней, и осуществляет работу трех главных передачи.

Главная передача вместе с дифференциалом могут передавать крутящий момент к передним колесам автомобиля от вторичного вала. Функцией дифференциала является обеспечение вращения колес имеющих разные угловые скорости.

Механизмы переключения двухвальной коробки передач имеют дистанционные действия, и, как правило, и располагаются отдельно от самого корпуса коробки передач. Связь между механизмом и коробкой осуществляется при помощи тяг и тросов. Тросовое соединение является наиболее простым, поэтому оно чаще применяется в механизмах переключения.

Данный механизм состоит из следующих деталей:

  • рычага управления;
  • троса выбора передач;
  • рычага выбора передач;
  • троса включения передач;
  • центрального штока переключения с необходимыми вилками;
  • блокирующего устройства.

Следует отметить, что понятие «выбор передачи» означает поперечный ход рычага управления параллельно оси автомобиля. Термин «включение передачи» означает продольный ход рычага (движение или ход к конкретной передаче).

Как работает двухвальная механическая коробка передач.

Схема работы двухвальной коробки передач аналогична трехвальной коробке. Основной акцент уделяется на механизм переключения передач.

При включении необходимой передачи движение рычага подразделяется на продольное и поперечное. При включении поперечного движения рычага основное усилие будет передаваться на трос выбора необходимой передачи. Трос будет воздействовать на рычаг управления выбора передач. Данный рычаг будет осуществлять повороты центральных штоков вокруг его оси, таким образом, обеспечивая выбор передачи.

При продольном ходе рычага, усилие будет передаваться на трос переключения передачи, и далее на сам рычаг переключения необходимой передачи. Далее рычаг будет производить горизонтальное передвижение штока с вилками. Определенная вилка на штоке будет перемещать муфту синхронизатора, и осуществлять блокирование зубчатого колеса ведомого вала. Таким образом, крутящие моменты от двигателя будут передаваться на ведущие колеса.

Автоматическая коробка передач

Автоматическая коробка передач, которая имеет сокращенное название АКПП, или часто в обиходе ее еще называют коробка автомат, является устройством, служащим для изменения крутящегося момента. АКПП применяется в автоматической трансмиссии автомобилей. Гидромеханическая коробка передач также часто называется автоматической.
Коробка автомат состоит из таких устройств:

  • механическая коробка передач;
  • гидротрансформатор;
  • система управления.
  • насос рабочей жидкости;
  • система охлаждения рабочей жидкости.

В автоматических коробках передач, которые устанавливаются на легковые автомобили с передним приводом, еще дополнительно в конструкцию включены дифференциал и главная передача.
Гидротрансформатор – это устройство, выполняющее функцию передачи и изменения крутящегося момента двигателя к коробке передач.

Конструкция гидротрансформатора состоит из таких основных деталей:

  • реакторное колесо;
  • турбинное колесо;
  • насосное колесо;
  • муфта свободного хода;
  • блокировочная муфта;
  • корпус гидротрансформатора.

С коленчатым валом двигателя соединено насосное колесо, тогда, когда турбинное колесо связано непосредственно с механической коробкой передач. В пространстве между турбинным и насосным колесом находится реакторное колесо, являющееся полностью неподвижной деталью. Колеса гидротрансформатора имеют лопасти специфической формы, позволяющей свободно проходить рабочей жидкости. Стоит отметить, что для этой цели на лопастях предусмотрены каналы.

Блокировочная муфта выполняет функцию блокировки трансформатора, которая необходима в некоторых режимах работы автомобиля. Как правило, рабочей жидкостью заполнены все элементы, которые расположены в корпусе гидротрансформатора. Гидротрансформатор работает по замкнутому циклу. Поток жидкости передается от насосного колеса на турбинное колесо и уже после – на реакторное колесо. Поток скорости усиливается за счет конструкции лопастей. Крутящийся момент увеличивается за счет потока рабочей жидкости, который направляется на насосное колесо. Крутящийся момент гидротрансформатора может развивать максимальную величину при самой минимальной скорости. Коленчатый вал двигателя увеличивает частоту вращения с увеличением угловой скорости турбинного и насосного колес, при этом поток жидкости меняет свое направление. Реакторное колесо начинает вращаться только тогда, когда срабатывает муфта свободного хода. В режиме гидромуфты может работать гидротрансформатор, при этом только передавая крутящийся момент.
Гидротрансформатор блокируется при замыкании блокирующейся муфты с дальнейшим ростом скорости. Напрямую происходит передача крутящегося момента от двигателя к коробке передач.

В составе автоматической коробки передач механическая служит для изменения крутящегося момента, и она также может обеспечить движение автомобиля задним ходом. Коробки автоматы имеют в своей конструкции планетарные редукторы, которые характеризуются своей компактностью и возможностью автономной работы. Из нескольких планетарных редукторов состоит механическая коробка передач, которые последовательно соединены для совместной работы. Обеспечить нужное число ступеней работы может некоторое объединение планетарных редукторов. Современные оснащаются шестиступенчатыми, семиступенчатыми и восьмиступенчатыми коробками передач.
Редуктор планетарный, как правило, имеет планетарный ряд, который состоит из таких деталей:

  • коронная шестерня
  • солнечная шестерня;
  • сателлиты;
  • водило.

В условиях блокировки нескольких элементов планетарного ряда, таких как коронная шестерня, солнечная шестерня, водило, производится передача вращения. Фрикционные тормоза и муфта осуществляет необходимую блокировку. Все элементы планетарного ряда блокирует муфта, при этом обеспечивая крутящимся моментом передачу. Конкретные элементы удерживает тормоз за счет соединения с корпусом коробки. Тормоз и муфта работают с помощью гидроцилиндров, управляющихся из распределительного модуля. Обгонная муфта, которая находится в конструкции коробки передач, выполняет функцию удерживания водила от вращения в противоположную сторону. Фрикционный тормоз и муфта являются механизмами, с помощью которых осуществляется переключение передач в АКПП.

Работа автоматической коробки передач заключается в выполнении некоторого алгоритма выключения и включения тормозов и муфты. Шестеренный насос выполняет функцию передачи рабочей жидкости в коробке автомат. Ступица гидротрансформатора приводит в действие насос. В автоматической коробке передач имеется соответствующая система, которая осуществляет охлаждение рабочей жидкости. В системе охлаждения двигателя находится теплообменник, способствующий охлаждению рабочей жидкости. Некоторые конструкции автоматических коробок передач имеют в своей конструкции отдельный радиатор.
Современные автоматические коробки передач управляются с помощью электронной системы, которая состоит из таких элементов:

    • электронный блок управления коробкой передач;
    • распределительный модуль;
    • входные датчики;
    • рычаг селектора.

Система в своей работе использует такие датчики:

  • температуры рабочей жидкости;
  • положения рычага селектора;
  • положения педали газа.
  • частоты вращения на входе коробки передач.

Электронный блок управления, находящийся в автоматической коробке передач осуществляет обработку сигналов датчика и управляет сигналами, идущими на распределительный вал. Данная система в процессе своей работы использует программу, которая предусматривает гибкий алгоритм перехода на низшую и высшую передачу. Блок управления двигателем взаимодействует с блоком управления коробкой передач.

В системе АКПП имеется распределительный модуль, который состоит из электромагнитных клапанов, выполняющих функцию управления рабочей жидкостью и переключения передач. Электронный блок управляет работой электромагнитных клапанов.
Рычагом селектора осуществляется непосредственное управление автоматической коробкой передач.

Необходимый режим работы АКПП производится перемещением рычага в соответствующее положение:

  • N – нейтральный режим;
  • D – движение вперед в режиме автоматического переключения передач;
  • Р – режим парковки;
  • R – режим заднего хода;
  • S – спортивный режим.

Некоторые коробки передач позволяют осуществлять быстрое ускорение авто с помощью режима «Кик-Даун» путем быстрого переключения передач.

Вариатор

Вариатор – это особый вид механической бесступенчатой трансмиссии, которая способна плавно менять соотношение скорости вращения и вращающего момента во всем интервале тяговых усилий и скоростей. Главным плюсом вариатора или бесступенчатой коробки передач является оптимальное использование двигателя за счет координации нагрузки на автомобиль с работой коленчатого вала, что дает в результате высокую экономию топлива.

У вариатора есть универсальное название – Continuously Variable Transmission (трансмиссия с плавно изменяющимся передаточным числом) и аббревиатура – CVT. Учитывая предельную мощность вариаторов, их обычно используют на легковых автомобилях, однако, с учетом новых разработок в автомобилестроении, сфера их применения постоянно расширяется.

В упрощенном виде структура вариаторной коробки передач выглядит следующим образом:

  • устройство, отвечающее за разъединение трансмиссии и двигателя (то есть, нейтральное положение);
  • непосредственно вариатор;
  • механизм, обеспечивающий задний ход;
  • управление коробкой передач.

Для обеспечения нейтрального положения коробки передач предназначены такие устройства:

  • автоматическое центробежное сцепление. Данный тип сцепления реализован в системе Transmatic;
  • оснащенное электронным управлением электромагнитное сцепление. Примером может служить коробка передач Hyper CVT на автомобилях марки ;
  • так называемое, «мокрое» многодисковое сцепление с электронным управлением. Реализовано в системе на автомобилях марки и ;
  • конвертер крутящегося момента или гидротрансформатор. Имеется в коробке передач Lineartronic на автомобилях , Ecotronic на автомобилях и Extroid на автомобилях марки .

На практике в автомобилестроении используются два типа вариатора – клиноременной и тороидный.

Описание устройства клиноременного вариатора.

Обычно клиноременная трансмиссия имеет в своем устройстве одну или две ременные передачи, которые включают два шкива, скрепленные клиновидным ремнем. Шкив – это соединение двух конических дисков, которые раздвигаются или сдвигаются, тем самым варьируя его диаметр. Сам ремень состоит из конических металлических пластин. Таким образом, за счет трения, которые происходит между шкивом и боковиной клиновидного ремня, осуществляется передача вращения. В устройстве вариаторов Lineartronic и используется цепь из металла, поэтому они называются клиноцепными.

Особенности работы клиноременного вариатора

Из-за специфики устройства вариаторная трансмиссия не имеет возможности обратного хода. Для обеспечения заднего хода в подобных коробках передач применяются особые конструкции. Обычно в таких конструкциях используется один из классов механических редукторов – дифференциальный (или планетарный) редуктор.

Часто производители оснащают вариаторную трансмиссию электронными системами управления, которые осуществляют синхронизацию диаметра шкивов с режимом оборотов двигателя, а, также управляют сцеплением и работой планетарного редуктора.

Для управления вариатором имеется рычаг переключателя. Эти режимы соответствуют режимам работы автоматической коробки передач. Иногда в вариаторе может присутствовать возможность выбора передаточных отношений в одном конкретном режиме. Эта функция призвана устранить субъективный фактор отрицательного восприятия водителем постоянства оборотов двигателя при наборе скорости.

Раздаточная коробка

Трансмиссия автомобиля состоит из множества конструктивных элементов, однако важнейшим из них, безусловно, является коробка передач. Данный модуль выполняет сразу несколько функций:

  • изменяет крутящий момент двигателя;
  • изменяет скорость и направление движения автомобиля;
  • служит для длительного разъединения двигателя и трансмиссии.

Существует несколько типов коробок передач, которые отличаются друг от друга принципом действия и во многом формируют тип трансмиссии автомобиля:

  • ступенчатые коробки;
  • бесступенчатые коробки;
  • коробки комбинированного типа.

В ступенчатых коробках крутящий момент силового агрегата изменяется ступенчато, то есть каждая ступень обеспечивает вращение с жестко установленной угловой скоростью или, если говорить другими словами, имеет конкретное передаточное число. Под этим термином подразумевается соотношение между количеством зубьев у ведомой и ведущей шестернями. Таким образом, все ступени в такой коробке имеют различные передаточные числа, причем более низкие ступени имеют большие передаточные числа, а более высокие – соответственно меньшие.

В свою очередь ступенчатые коробки передач делятся на два типа:

  • механические коробки;
  • роботизированные.

Механическая коробка передач (в обиходе ее часто называют просто «механикой», а сокращенно – МКПП) является ни чем иным, как многоступенчатым цилиндрическим редуктором, переключение передач в котором происходит в ручном режиме. Такой редуктор может иметь разное количество ступеней и, соответственно, механическая коробка передач может быть четырех-, пяти-, шести-, семиступенчатой, а в отдельных случаях иметь и больше ступеней.

По сравнению с другими коробками передач, «механика» имеет несколько плюсов. Прежде всего, это простота конструкции, из которой выплывает следующее преимущество – надежность. Еще одной важной особенностью является возможность ручного управления при любых режимах движения автомобиля. Подобные качества сделали механическую коробку передач наиболее распространенной среди всех типов коробок. Впрочем, в последнее время наблюдается рост популярности автоматических коробок, речь о которых пойдет немного ниже.

Роботизированная коробка передач (иногда ее еще называют автоматизированной коробкой, а в обиходе просто «роботом») является вариацией механической коробки, где функции переключения передач и включения/выключения сцепления автоматизированы. Современные «роботы» комплектуются двойным сцеплением, благодаря которому передача крутящего момента происходит без разрыва потока мощности. К тому же, роботизированные коробки передач на основе двойного сцепления заметно снижают расход топлива и обеспечивают более высокую динамику разгона по сравнению с другими видами КПП. Подобные качества принесли «роботам» высокую популярность, которая с каждым годом только увеличивается. По сути, «робот» сочетает в себе удобство коробки-автомата с надежностью и экономичностью механической коробки передач. Сегодня преселективные КПП можно увидеть как на бюджетных автомобилях от таких производителей как , и др., так и на автомобилях класса премиум ( , ). Наиболее известными являются роботизированные коробки передач Direct Shift Gearbox (), Sequential M Gearbox (SMG) и Изитроник.

Что касается бесступенчатых КПП, то к ним, прежде всего, относится вариаторная коробка передач, которую в обиходе называют просто «вариатором». Главным отличием такой коробки от своих ступенчатых собратьев является то, что в ней передаточные числа изменяются плавно. Такой эффект достигается благодаря механическому или же гидравлическому преобразованию крутящего момента.

Благодаря такой конструкции, автомобили, оснащенные вариаторами, обладают оптимальными динамическими характеристиками. Вместе с тем, у вариаторных коробок есть и свои ограничения. Одним из самых существенных является ограничение величины передаваемого крутящего момента. К тому же, некоторые конструкции имеют проблемы с надежностью и общим ресурсом работы. Как правило, вариаторы устанавливаются на автомобили японского производства ( , ). Что касается европейских компаний, то здесь вариаторные коробки чаще всего использует концерн . Наиболее известными конструкциями вариаторных КПП являются Экстроид и Мультитроник.

В автоматических коробках переключения передач (в обиходе их называют «автоматами», а сокращенно ) используется комбинированный принцип действия. Классическая АКПП состоит из гидротрансформатора, который заменяет механическое сцепление и обеспечивает безступенчатое изменение крутящего момента и механической коробки передач, которая, как правило, имеет вид планетарного редуктора. Также в современную коробку-автомат входят такие узлы, как система охлаждения рабочей жидкости, насос для подачи рабочей жидкости и система управления коробкой. У современных автоматов насчитывается семь (так называемые 7G-Tronic), а в некоторых случаях даже восемь передач.

Коробки-автоматы имеют как преимущества, так и недостатки. К преимуществам можно отнести высокую надежность и плавное переключение передач. К недостаткам таких коробок обычно относят низкую разгонную динамику и повышенный (по сравнению с другими коробками) расход топлива. В последнее время на рынке появились автоматические коробки передач, в которых предусмотрена функция имитации ручного переключения (Стептроник, ).

Сегодня под термином «коробка-автомат» подразумевается не только классическая коробка на основе гидротрансформатора, но также вариаторные и роботизированные КПП. Все эти коробки имеют электронное управление.

Еще одной разновидностью автоматической КПП является так называемая адаптивная коробка передач, которая способна адаптироваться под стиль вождения водителя.

Сцепление

Сцепление автомобиля предназначено для плавной и безударной передачи крутящего момента от коленвала двигателя к коробке переключения передач. Сейчас на подавляющем большинстве автомобилей устанавливается однодисковое сцепление. Данный узел автомобиля был разработан в конце IXX века. Ранее двигатель был связан с коробкой передач посредством кожаного ремня с изменяемым натяжением. Автомобильное сцепление имеет свой собственный корпус и устанавливается на двигатель и уже к нему крепится коробка переключения передач.

Важнейшей задачей современного сцепления, независимо от его конструкции и устройства является плавное отключение и подключение двигателя к трансмиссии автомобиля. Кроме того, сцепление защищает детали и узлы трансмиссии от резких перегрузок. Автомобильное сцепление может быть фрикционным, гидравлическим или электромагнитным. На данный момент широко распространено фрикционное сцепление, которое в свою очередь делится на подвиды:

  • однодисковое;
  • двухдисковое;
  • многодисковое.

Также стоит отметить, что существует и так называемое «мокрое сцепление». В конструкции мокрого сцепления, ведомые и нажимные диски, работают в какой-либо жидкости, которой чаще является специальное масло. В сухом агрегате жидкость не используется и соединение двигателя и КПП осуществляется за счет сухого трения.

Устройство сцепления

Как уже было сказано, на данный момент практически на всех легковых автомобилях с механической КПП используется сухое однодисковое сцепление. Двух- и многодисковые агрегаты устанавливаются на грузовые или мощные спортивные легковые автомобили.

Сухое однодисковое сцепление состоит из следующих основных составляющий:

Ведущий диск, который также является маховиком, на котором устанавливается зубчатый венец для стартера, жестко крепится к коленчатому валу двигателя автомобиля. Маховик может состоять как из одной, так и из двух частей. Ведущий диск, состоящий из двух частей, называется двухмассовым и позволяет максимально сгладить рывки при включении сцепления. На большинстве автомобилей установлен простейший маховик.

На маховике закрепляется корпус нажимного диска сцепления, который чаще называют корзиной. В корзине установлен непосредственно нажимной диск, который закреплен в корпусе при помощи специальной диафрагменной пружины. Между ведущим и нажимным диском устанавливается ведомый диск, который имеет шлицы на ступице для соединения с первичным валом КПП и жестко зажат между маховиком и корзиной сцепления. Ведомые диски для большинства легковых автомобилей оборудованы демпферными пружинами, которые способствуют сглаживанию рывков и вибраций.

Нажимной или как его чаще называют – выжимной подшипник, расположен на муфте выключения сцепления, непосредственно на корпусе коробки переключения передач. Выжимной подшипник предназначен для воздействия на диафрагменную пружину корзины сцепления, которая в свою очередь перемещает нажимной диск. Подшипник перемещается посредством вилки, на которую воздействует трос или гидропривод сцепления.

Двухдисковое сцепление сухого типа состоит практически из тех же конструктивных элементов. Отличия состоят лишь в наличии второго ведомого диска и проставки между ними. Такое сцепление способно передать от двигателя к трансмиссии намного больший крутящий момент и имеет довольно большой ресурс работы. Однако, как показала практика, для легкового автомобиля вполне достаточно простого однодискового агрегата.

Принцип работы автомобильного сцепления

Несмотря на то, что устройство сцепления кажется весьма сложным, принцип его действия довольно прост. При нажатии на педаль, вилка с выжимным подшипником воздействует на диафрагменную пружину, тем самым отводя на определенное расстояние нажимной диск от маховика и освобождая ведомый – происходит выключение сцепления и отсоединение двигателя от КПП . При нажатой педали сцепления, водитель имеет возможность включить, выключить или же, переключить передачу.

При отпускании педали, вилка отводит нажимной подшипник от лепестков корзины, тем самым прижимая нажимной диск к маховику. За счет того, что между маховиком и корзиной расположен ведомый диск с фрикционными накладками, происходит плавная передача крутящего момента. Насколько плавно была отпущена педаль сцепления, настолько плавно передастся крутящий момент.

Типтроник

Продвинутый механизм переключения коробки передач, дающий возможность контролировать динамику автомобиля при любом режиме работы двигателя принято называть типтроник (Tiptronic). Независимо от того, тормозите вы, ускоряетесь или едите на пониженной передаче, Типтроник прекрасно справляется с контролем динамики, что выгодно отличает коробку передач с функцией Типтроник от обычной АКПП.

Впервые о торговой марке Типтроник автомобилисты узнали в 1989 году – именно тогда известный гигант немецкого автопрома зарегистрировал ее. Изначально Типтроник разрабатывалась исключительно для спортивных автомобилей, которым был необходим удобный механизм переключения передач на больших скоростях. Система позволяла быстрее переключать передачи, за счет меньшей траектории рычага управления.
>

Многие автомобили концерна оснащены коробками передач с этой системой. Система Типтронник используется в роботизированных коробках передач , S-Tronic и вариаторе . В автомобилях реализован аналог Типтроника – Стептроник (Steptronic). Название системы Типтроник стало нарицательным ввиду распространения ручного режима на автоматических коробках передач.

Существует неверное мнение, что Типтроник – отдельный элемент автоматической коробки передач, позволяющий перейти на ручное управление, но это не так. Типтроник не конструкция, а функция – коробка передач проектируется и собирается уже с системой Типтроник. Выбирая автомобиль, многие автолюбители, интересующиеся этой системой, верят обещаниям продавца, что Tiptronic можно установить в классическую коробку передач позже. Знайте, что это обман!

Для включения режима Типтроник, воспользуйтесь рычагом селектора автоматической коробки передач. Чтобы вам было понятней, обратите внимание на кулис селектора – на нем имеется специальный вырез, на котором указаны обозначения «+» и «-».

Существуют модели автомобилей, в которых по рулевым колесом имеется специальный переключатель, позволяющий перейти на ручное управление коробкой передач. Эти подрулевые переключатели часто называют «лепестками», выбрав определенную передачу, вы увидите ее изображение на дисплее информации.

В электронном блоке, управляющим работой коробки передач, имеется специальная программа, предназначенная для запуска системы. За активацию функции Типтроник отвечают два устройства: переключатель в селекторе коробки передач и переключатель под рулевым колесом.

Селектор коробки передач может быть оснащен несколькими переключателями (1-3). Один переключатель отвечает за включение и выключение, два других позволяют переключиться на нижнюю и на наивысшую передачу. При нажатии переключателя, сигнал поступает в электронный блок, в котором происходит активация алгоритма программы. Переключение передач осуществляется через блок управления.

Нажимая на лепестки, водитель производит активацию механизма, переводящего автоматическую коробку передач в ручной режим, без переключения селекторного рычага. Если необходимость в использовании подрулевых переключателей отпала, и водитель некоторое время не использует их, в системе срабатывает алгоритм, возвращающий коробку передач в автоматический режим работы. Это очень полезно начинающим автолюбителям: даже если водитель забудет переключить режим – «умный» алгоритм все сделает сам.

Функция Типтроник, реализованная в вариаторе срабатывает в результате запрограммированного алгоритма фиксированных передаточных чисел в вариаторе.

Мультитроник

Вариатор мультитроник – это лучшая бесступенчатая коробка передач из когда-либо создававшихся в мире. Благодаря использованию данного устройства не только повышается комфорт при управлении автомобилем, но и достигается невероятно высокая топливная экономичность двигателя, а также значительно улучшаются динамические качества транспортного средства. Мультитроник устанавливается, как правило, на автомобили Audi премиум-класса.
Данная коробка передач состоит из восьми устройств, обеспечивающих по-настоящему идеальную езду автомобиля. Мокрое сцепление здесь представляет собой совокупность многодисковых муфт-фрикционов переднего и заднего хода. Для того чтобы избежать перегрева фрикционов, в коробке передач предусмотрено их принудительное охлаждение посредством отдельного потока рабочей жидкости. Муфты, установленные в мультитронике, выгодно отличаются от гидротрансформаторов, применяемых в обычных АКПП. По сравнению с последними, муфты более компактны, легки и удобны в управлении.
Для обеспечения комфортного управления автомобилем при езде задним ходом используется планетарный механизм. Когда машина движется вперед, фрикцион переднего хода полностью блокирует редуктор. При движении в обратном направлении начинает действовать уже фрикцион заднего хода, блокирующий коронную шестерню, что заставляет планетарный редуктор двигаться в другую сторону. При этом развить чрезмерно высокую скорость не получится: при движении задним ходом она ограничивается электроникой.

В мультитронике также используется вариатор, необходимый для плавного изменения передаточного числа. Данное устройство состоит из ведущего и ведомого шкивов, каждый из которых включает в себя по два диска с поверхностью конической формы. Ведущий диск соединяется через промежуточную передачу с коленчатым валом, в то время как крутящий момент с ведомого идет на главную передачу. Кроме того, каждый шкив имеет один подвижный диск, что позволяет менять диаметр шкива прямо во время работы.

В мультитронике впервые было внедрено техническое решение, позволившее значительно увеличить количество передаточных чисел. Этого удалось достигнуть за счет использования металлической цепи, работающей максимально тихо. Снижения шума удалось добиться путем использования звеньев с разным размером.
Привод обоих шкивов включает в себя прижимной и регулировочный гидроцилиндры. Если первый необходим для того, чтобы прижимать цепь к дискам, то регулировочный гидроцилиндр служит для регулировки передаточного отношения.
В мультитронике используется уникальная система управления коробкой передач, состоящая из гидравлического блока, входных датчиков и электронного блока управления.
Первый из перечисленных элементов отвечает за работу фрикционов и их охлаждение с помощью эжекционного насоса, за функционирование прижимных и регулировочных цилиндров, регулировку давления рабочей жидкости.
Циркуляция рабочей жидкости обеспечивается масляным насосом шестерного типа. Охлаждается она посредством масляно-водяного теплообменника, который является составной частью системы охлаждения двигателя.

Все входные датчики делятся на следующие устройства:

  • датчик контроля давления жидкости
  • температурный датчик
  • датчики количества оборотов на выходе и входе коробки передач
  • датчик, отслеживающий положение рычага селектора

Выбор оптимального передаточного числа в зависимости от пожеланий водителя и дорожных условий производит электронный блок управления. Ориентируясь на сигналы, поступающие от датчиков, блок управления определяет оптимальное давление рабочей жидкости на конкретный момент времени и обеспечивает это давление, оказывая воздействие на электромагнитные клапаны.
Режимы управления мультитроником, имеющим механическое соединение с селекторным рычагом, совпадают с режимами АКПП. Кроме того, для возможности быстрого ускорения автомобиля в данной коробке существует режим Kick-Down. Здесь также реализована функция Tiptronic специально для тех, кто привык пользоваться механической коробкой.

Роботизированная коробка передач DSG

В настоящее время на поток концерна AG поставлено производство роботизированной DSG, известной как Direct Shift Gearbox, которая устанавливается почти на все современные модели легковых автомобилей массового производства, и обеспечивает быстрое переключение передач, не прерывая мощности двигателя. Именно эти качества коробки в большей мере привлекают внимание автолюбителей.

При использовании роботизированной коробки, непрерывное поступление крутящего момента непосредственно от двигателя к колесам достигается посредством двух сцеплений и соответствующих им рядов передач. Конструкции новой роботизированной коробке DSG имеют шесть и семь ступеней.

7-я коробка имеет крутящий момент около 250 Нм и устанавливается на автомобили класса В и С, а так же отдельные модели класса D. Коробка передач, имеющая шесть ступеней, создает крутящий момент почти в 350 Нм. Она, как правило, устанавливается на легковые автомашины с более мощным двигателем.

В коробку передач DSG внесены следующие устройства:

  • - главная передача
  • - два ряда передач
  • - 2-е сцепление
  • - дифференциалы
  • - систему управлений коробкой
  • - картер (корпус)

Схема коробки DSG

В новой коробке крутящий момент передается на два ряда передач сцеплением, включающим ведущий диск. Его работу обеспечивает маховик, соединенный с диском через входную ступицу, которая, в свою очередь, взаимодействует с двумя фрикционными многодисковыми муфтами, связанными с рядами передач при помощи все той же главной ступицы.
Двойное сцепление шестиступенчатой коробки передач является «мокрым» типом, так как заливается маслом, в то время как семиступенчатая имеет обычное сцепление. Такая конструкция DSG позволяет потреблять масла всего 1,7 л, что значительно сокращает энергозатраты и повышает экономичность двигателя. Немаловажную роль так же играет и электрический масляный насос, который заменил гидравлический.
Первый ряд механизмов коробки передач используется при движении задним ходом и имеет нечетное число передач. За движение автомобиля передним ходом отвечает четное количество передач коробки. Оба ряда имеют вид первичного и вторичного валов, снабженных блоками шестерен.
Для переключения передач и управления сцеплением разработаны специальные системы, которые снабжены:

  • - входными датчиками
  • - электронным блоком управления
  • - исполнительными механизмами
  • - электрогидравлическим блоком управления.


Вся система объединена в единый модуль, известный как Mechatronic, расположенный в картере. Входными датчиками производится контроль частоты вращения на входе и выходе роботизированной коробки DSG, температуры и давления масла, положение вилок при включении передач. Электронным блоком управления осуществляется алгоритмом управления коробкой передач на основании сигналов датчиков.
Работа гидравлических контуров управления роботизированной коробкой отслеживается электрогидравлическим блоком управления, который имеет следующие устройства:

  • - мультиплексор
  • - электромагнитные клапана
  • - распределительные золотники
  • - клапаны регулирования давления

Встроенный в коробку передач мультиплексор осуществляет контроль работы цилиндров переключения при помощи электромагнитных клапанов. Клапаны регулирования давления и клапаны электромагнитные являются основными механизмами в системе управления роботизированной коробки Direct Shift Gearbox. Электромагнитными клапанами осуществляется переключение передач, а золотники-распределители включаются в работу посредством рычага селектора.
Работа новой DSG осуществляется последовательным включением передач всех рядов, причем во время работы одной из передач, автомат выбирает вторую и готовит ее к включению, которое производится синхронизатором и муфтой. Эта операция управляется электроникой с гидравлическим усилителем.
Все инновации, применяемые в DSG, позволяют автомобилю быстро набирать скорость, что с успехом используется в спортивных автомобилях и не позволяет терять драгоценные секунды. При ее создании преследовалась цель уменьшения потерь крутящего момента, который создает большие нагрузки на трансмиссию и сцепление. Автолюбителями отмечено, что новая модель коробки передач нежнее, хорошо работает на автомашинах с меньшим крутящим моментом и позволяет в значительной мере экономить топливо.

Трансмиссия любого автомобиля – это система, выполняющая функции преобразования, распределения и доведения крутящего момента от двигателя до ведущих колес. Коробка передач является наиболее важным элементом данной системы.

КПП: функции и основные типы

Коробка передач автомобиля предназначена для преобразования и распределения крутящего момента двигателя для последующего доведения его до ведущих колес, а также для изменения объема тяговых усилий при различных условиях движения транспортного средства. Кроме того, она призвана обеспечить разобщенную работу ведущих колес и двигателя (например, при прогреве двигателя или его работе на нейтральной передаче).

На данный момент существует четыре основных типа коробки:

  1. механические;
  2. роботизированные;
  3. автоматические;
  4. вариатор.

Механическая КПП («механика», МКПП) имеет самый простой принцип работы. Она представляет собой цилиндрический редуктор, для которого предусматривается ручной способ переключения передач.

Основные виды МКПП

Акцентируем внимание на «механике». Это будет наиболее оптимальным хотя бы потому, что знание МКПП позволит при определенных навыках и умениях осуществить ее текущее обслуживание и даже ремонт.

«Механика» — это ступенчатая коробка передач. Иными словами, принцип работы механики заключается в следующем: крутящий момент двигателя изменяется ступенями — парами взаимодействующих друг с другом шестерен. У каждой ступени определенное передаточное число, преобразовывает скорость вращения коленвала двигателя и обеспечивает вращение с необходимой угловой скоростью.

Число ступеней, которыми комплектуется коробка передач, лежит в основе классификации механических КПП. Так, выделяют:

  1. четырехступенчатые;
  2. пятиступенчатые;
  3. шестиступенчатые и более.

Наиболее оптимальным вариантом у специалистов считается пятиступенчатая КПП, которая и является наиболее распространенной в среде «механики».


Вторым критерием классификации механической коробки является количество валов, используемых при преобразовании и распределении крутящего момента двигателя. Существуют трехвальные КПП (используемые преимущественно на заднеприводных транспортных средствах) и двухвальные (применяемые на переднеприводных автомобилях).

Устройство двухвальной КПП и принцип ее работы

Ограничимся анализом наиболее распространенного вида механической коробки передач — двухвальной. Устройство механической коробки передач включает в себя следующие детали и узлы:

  1. первичный (или ведущий) вал;
  2. блок шестерен первичного вала;
  3. вторичный (или ведомый) вал;
  4. блок шестерен вторичного вала;
  5. механизм переключения передач;
  6. муфты синхронизаторов;
  7. картер;
  8. главную передачу;
  9. дифференциал.

Функции первичного вала сводятся к передаче крутящего момента двигателя (посредством соединения со сцеплением). Блок шестерен первичного вала жестко закреплен на валу.

Вторичный вал располагается параллельно первичному. Его шестерни, свободно вращающиеся на валу, находятся в зацеплении с шестернями первичного вала. Кроме того, на ведомом валу находится в жестко закрепленном состоянии шестерня — элемент главной передачи.

Назначение главной передачи и дифференциала сводится к передаче крутящего момента к ведущим колесам транспортного средства. Механизм переключения обеспечивает выбор необходимой передачи в конкретных условиях движения автомобиля.
Несмотря на то, что устройство коробки (двух — и трехвальной) различаются, принцип их работы один и тот же.


Нейтраль исключает подачу крутящего момента с двигателя на колеса. Перемещение рычага (включение передачи) означает перемещение муфты синхронизатора специальной вилкой. Муфта синхронизирует угловые скорости вторичного вала и соответствующей шестерни. Затем зубчатый венец муфты зацепляет зубчатый венец шестерни, что обеспечивает блокировку шестерни вторичного вала на самом валу. В итоге коробка передает крутящего момента с определенным передаточным числом от двигателя автомобиля на ведущие колеса.

Принцип работы механической коробки при переключении передач абсолютно идентичен.

Основные неисправности МКПП

Неисправности МКПП определяются особенностями ее устройства и эксплуатации. Наиболее распространенными техническими проблемами механической коробки передач являются следующие.

1. Затрудненное переключение (или включение) передач.
Указанная неисправность обусловлена выходом из строя механизма переключения передач, износом и заеданием синхронизаторов или шестерен, недостаточным уровнем или низким качеством трансмиссионного масла в картере.

2. Непроизвольное выключение передач.
Это обстоятельство (именуемое в просторечии — «вылетает скорость») определяется неисправностями блокировочного устройства (например, шариков-фиксаторов) и критическим износом синхронизаторов и шестерен.

3. Устойчивый шумовой фон при работе.
Данную неисправность необходимо конкретизировать. Специалисты выделяют три ее проявления:

  • шум при работе коробки;
  • шум при работе только одной конкретной передачи;
  • шум коробки при нейтральном положении рычага управления.

Общий шум коробки обуславливается изношенностью или повреждением подшипников, шестерен, синхронизаторов, шлицевых соединений, а также пониженным уровнем трансмиссионного масла в картере. Шум при работе одной из передач является показателем изношенности или повреждения конкретных шестерен и синхронизаторов. А вот шумовой фон в позиции «нейтраль» чаще всего свидетельствует об износе подшипника ведущего (первичного) вала.

4. Подтекание трансмиссионного масла.
Эта проблема коробки передач связана с избытком смазки в КПП или общей негерметичностью картера, вызванной повреждением сальников, уплотнительных прокладок, ослаблением крепления крышек.
Чаще всего описанные выше неисправности, связанные с износом и повреждением деталей и узлов, ликвидируются исключительно их заменой. Причем наиболее предпочтительным в этом деле является обращение в специализированный автосервис.

Основы эксплуатация и обслуживания МКПП

При соблюдении правил эксплуатации, правильном техническом и сервисном обслуживании у водителя не должно возникнуть проблем с КПП автомобиля. В этом случае она работает вплоть до окончания срока эксплуатации транспортного средства.


В процессе работы коробки необходимо постоянно контролировать уровень смазки – трансмиссионного масла – и выдерживать необходимый показатель, не допуская ни его превышения, ни занижения. В первом случае в КПП будет концентрироваться избыточное давление, во втором – не будет обеспечиваться должной смазки трущихся узлов и деталей, что приведет к уменьшению срока их работы. Кроме того, важной профилактической мерой является периодическая полная замена смазки , которая осуществляется в соответствии с технической документацией транспортного средства. Этот принцип эксплуатации КПП можно контролировать водителю самостоятельно, без привлечения специалиста.

Весьма часты случаи возникновения механических неисправностей коробки в результате необоснованно агрессивной и грубой работы водителя с рычагом переключения передач. Важно помнить, что переключение скоростей – это смена режимов работы коробки (изменение ступеней). Резкая и быстрая смена передач может привести к быстрому выходу из строя механизма переключения, синхронизаторов , и валов с шестернями.

И еще один момент: важно контролировать, как работает коробка переключения передач. Никто и никогда не заменит человеческий фактор: водителю, ощущающему нестандартность работы КПП, необходимо либо самостоятельно найти и устранить причину неисправности, либо (что предпочтительнее) обратиться к сервис-мену на СТО.

Управление коробками передач осуществляется системами уп­равления сцеплением, переключением передач, поворотом машины и горным тормозом. Исполнительным механизмом системы уп­равления является механизм распределения.

Система управления сцеплением предназначена для отключе­ния КП от двигателя при его пуске и переключении передач, а также для плавного трогания машины с места и состоит из педа­ли 71 (рис. 10) и приводных устройств, соединяющих ее с MP.

Отключение КП осуществляется выжимом педали 71 до упора в регулировочный болт 60. При этом усилие от педали передается через рычаг 72, приводные устройства системы, рычаг 43 и ва­лы 25 и 42 к рычагам 5 я 79 выключения MP. В механизмах рас­пределения обеих КП каналы бустеров соединяются со сливом, поэтому все ранее включенные фрикционы выключаются. При дальнейшем движении педали рычаги 23 и 37, приваренные к валам 25 и 42, выбирают зазор К (см. виды А и Б), поворачивают рычаги 6 и 82 и облегчают включение первой передачи и пере­дачи ЗХ. Включение КП осуществляется отпусканием педали. При этом педаль и приводные устройства системы под действием пружины 58 возвратятся в исходное положение и масло из MP поступит в бустер включенного фрикциона. Вал 25 соединен при­водом с механизмом блокировки переключения реверса в поло­жениях Ф и Т. Педаль сцепления размещается в отделении управления, а приводные устройства - в носовой части корпуса.

Монтажное регулирование системы должно обеспечить:

быстрое падение давления масла в бустерах фрикционов обеих КП до 0 при выжиме педали до упора;

равномерное и синхронное возрастание давления в бустерах фрикционов обеих КП при плавном отпускании педали;

четкое возвращение системы в исходное положение при отпус­кании педали.

Регулирование системы осуществляется следующим образом.

В исходном положении системы рычаг 43 винтом 41 упирается в кронштейн 40. Зазор К между рычагом 37 и пальцем рычага 82 и между рычагом 23 и пальцем 7 должен быть в пределах 1 ... 4 мм. Регулируется зазор винтом 41.

Длина тяги 30 регулируется так, чтобы стрелка 78 при упоре винта 41 в кронштейн 40 совпадала с риской, обозначенной циф­рой 0 на крышке левого MP.

Ход педали 71 должен быть отрегулирован так, чтобы при упоре педали в болт 60 стрелка 78 совпадала с риской, обозна­ченной цифрой 1 на крышке левого MP. Регулируется ход педали болтом 60.

Возвращение системы в исходное положение обеспечивается регулированием натяжения пружины 58 с помощью винта 55.



Система управления переключением передач осуществляет изменение положения пробок MP, обеспечивая этим включение фрикционов КП, соответствующих включаемой передаче.

Система состоит из избирателя 76 и приводных устройств.

Избиратель состоит из корпуса 1 (рис. 11), рычага 2, блоки­ровочного устройства. К корпусу 1 (рис. 11) избирателя крепится гребенка 7. Гребенка имеет девять пазов для фиксации рычага 2. У каждого паза предусмотрено цифровое обозначение передач (1 ... 7), а также набиты буквы Н - нейтраль и ЗХ-задний ход. Для четкой фиксации передач в корпусе под гребенкой уста­новлены штифты 6.

Рычаг переключения передач установлен на вал 18. На рычаге закреплено механическое блокировочное устройство.

Рычаг 2 находится в постоянном зацеплении с вилкой рыча­га 11 под действием возвратной пружины 20. Для передачи ко­манд блоку 14 переключателей к рычагу 11 крепится копир 10.

Блокировочное устройство состоит из электрического и меха­нических устройств.

Электрическое блокировочное устройство предназначено для предотвращения прямого перехода рычага переключения передач с седьмой передачи на четвертую при скорости движения маши­ны, большей, чем скорость, позволяющая производить переключе­ние передач в КП.

Во время движения машины со скоростью, соответствующей включенной передаче, от датчика 13 блока 14 переключателей и тахогенератора, установленного в правом направляющем колесе в блок автоматики БА20-1С, поступают одинаковые электрические сигналы, при этом цепь электромагнита 8 остается замкнутой и шток его давит на собачку 15, которая входит в зацепление с защелкой 16 и препятствует переключению рычага 2 с высшей передачи на низшую. Одновременно с этим на щите электропри­боров загорается желтая сигнальная лампа КУЛИСА. Для переключения передачи необходимо снизить скорость движения машины до погашения сигнальной лампы. При этом в блок авто­матики поступают два разных электрических сигнала от датчика и тахогенератора, цепь электромагнита размыкается и гаснет сигнальная лампа КУЛИСА, пружина 9 выводит собачку 15 из зацепления с зубьями защелки 16 и возвращает собачку и шток электромагнита в исходное положение. Это позволяет включить передачу на одну ступень ниже. После включения передачи на одну ступень ниже копир 10 через блок 14 переключателей включает датчик 13 и в блок автоматики снова поступают два одинаковых сигнала (от датчика и от тахогенератора). Цепь электромагнита замкнется, и он штоком введет собачку 15 в за­цепление с защелкой 16, а на щите загорится сигнальная лампа. Этот процесс повторяется при переключении передач с седьмой до четвертой. Блокировочное устройство не ограничивает после­довательность выбора передач при переключении с четвертой на низшую, а также с низшей на высшую передачу.



Электрическое блокирующее устройство в аварийных случаях (при отказе тормоза), когда возникает необходимость быстрого снижения скорости движения путем перехода на низшую передачу (например, на скользком участке пути для предотвращения наез­да), может быть выключено с помощью выключателя. При этом установленная на выключателе пломба срывается.

Механическое блокировочное устройство предназначено для предотвращения прямого перехода рычага 2 переключения пере­дач с седьмой на четвертую и с первой передачи на передачу ЗХ без введения его в пазы промежуточных передач и нейтрали.




Переключение передач осуществляется перемещением рычага избирателя в требуемый паз гребенки. Рычаг через тягу 75 (рис. 10), рычаг 73, вал 77 и тягу 1 поворачивает рычагом 13 пробки MP, соединенные между собой валом 27

Система управления поворотом машины состоит из рыча­гов 68 и 69 поворота и приводных устройств.

Правый рычаг 69 поворота приварен к валу 53. На шлицы вала 53 устанавливается и крепится стяжным болтом рычаг 67. Вал опирается на подшипники, установленные во втулке 48 и в корпусе 52.

Левый рычаг 68 поворота установлен на вал 53. Рычаг с по­мощью пальца 65 соединяется с рычагом, приваренным к втул­ке 48. На шлицевую часть втулки устанавливается рычаг 66.

Система управления в процессе работы имеет три положения: исходное, первое и второе. Из них фиксируется только исходное положение.

Усилие при перемещении правого рычага 69 поворота переда­ется через приводные устройства системы к рычагу 18, тяге 17 и далее на рычаг 4, который в свою очередь воздействует на золот­ник поворота. При достижении рычагом поворота первого поло­жения давление масла в бустерах КП снизится до нуля. При дальнейшем перемещении рычага поворота давление масла в бус­терах включаемых фрикционов правой КП возрастает до нор­мального и во втором положении рычага поворота включится пе­редача на одну ступень ниже. Чтобы не было пробуксовки дисков фрикционов в левой КП со стороны забегающей гусеницы, в бус­теры этих фрикционов подается масло с повышенным давлением, создаваемым левым MP. Это достигается одновременным пере­мещением рычагов 18, 20, 34 и тяги 36. Тяга, перемещаясь, вы­бирает свободный ход и воздействует на палец рычага 82 левого MP. Последний воздействует на золотник регулятора давления MP. Аналогично происходит поворот при переводе левого рычага поворота. Если одновременно переместить оба рычага поворота во второе (крайнее заднее) положение, скорость движения маши­ны снизится на одну передачу, а при движении на первой пере­даче или передаче ЗХ машина остановится.

Если отпустить рычаги поворота, то под действием пружин 59 и 83 все детали системы возвратятся в исходное положение.

Рычаги поворота размещены в отделении управления, а при­водные устройства системы - в носовой части корпуса.

Механизм распределения

Механизм распределения предназначен для изменения давле­ния масла и направления его потоков к соответствующим бустерам фрикционов КП в зависимости от заданных положений сис­тем управления сцеплением, переключением передачи и поворотом машины.

На машине установлены два механизма 12 (рис. 10) и 44 рас­пределения - правый и левый. Механизм распределения состоит из пробки 25 (рис. 12), втулки 36, механизма 30 регулирования давления.

просмотров