Простой самодельный лабораторный блок питания. Схема лабораторного источника питания

Простой самодельный лабораторный блок питания. Схема лабораторного источника питания

Доброго времени суток форумчане и гости сайта Радиосхемы ! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, . В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А - минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом - ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие - раньше ограничить ток.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге - смотрите далее.

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

Лабораторный блок питания прежде всего предназначен для подачи питающего напряжения на разрабатываемые радиолюбительские схемы схем и должен обеспечивать широкий интервал регулируемых токов и напряжений, иметь защиту от короткого замыкания и от чрезмерного токового потребления. Лабораторный блок должен быть всегда под рукой у каждого уважающего себя радиолюбителя

На биполярном транзисторе VT1 собрана схема модуля сравнения лабораторного блока: с бегунка переменного сопротивления R3 на базу первого транзистора проходит образцовое напряжение, которое задается источником образцового напряжения на радиокомпонентах VD5, VD6, HL1, R1. На эмиттерный переход VT1 поступает входное напряжение с делителя на сопротивлениях R14 и R15. В результате сравнения обоих уровней, сигнал рассогласования поступает на базу второго транзистора, который включен по схеме усилителя тока и управляет силовым транзистором VT4.

Работа лабораторного блока питания в режиме КЗ

Если произойдет случайное короткое замыкание в схеме лабораторного источника или нагрузка превысит разрешенный предел, увеличится падение напряжения на мощном сопротивление R8. В результате чего третий транзистор откроется и тем замкнет базовую цепь VT2, лимитируя нагрузочный ток на выходе блока питания. Сигнализирует о перегрузки по току светодиод HL2.


Если потребуется отрегулировать нагрузочный ток, то можно в разрыв цепи между резисторами R7 и R9 подсоединить переменное сопротивление номиналом 250 Ом, причем бегунок его нужно подсоединить к базе третьего транзистора. Нагрузочный тока можно регулировать в диапазоне от 400 мА до 1,9 А.

Трансформатор можно использовать любой с вторичной обмоткой на 20-40 вольт. Дроссель L1 можно намотать на каркас диаметром 8 мм и 120 витков провода ПЭЛ 0,6 мм.

Почти универсальным блоком может стать простой линейный БП 1,3 – 30 Вольт и токовой регулировкой от 0 до 5 Ампер, который будет работать в режиме стабилизации напряжения и тока. В случае необходимости им можно будет, как зарядить аккумуляторную батарею, так и запитать радиолюбительскую схему.

Ниже представлена схема оригинал. На ее базе мы и сделаем лабораторный блок своими руками.


Схема выполнена на операционном усилителе LM317, работающим в режиме стабилизации, которым можно регулировать вольты в интервале от 1,3 до 37 В. Работая вместе с мощным биполярным транзистором КТ818, схема может пропустить через себя приличный ток. Стабилизатор тока и ограничитель в одном лице, так называемая схема защиты БП, базируется на микросхеме LM301.


В остальной схемотехнической части мы видим парочку фильтрующих конденсаторов, два диодных моста и весьма оригинальный способом включения измерительной головки. Также используется довольно устаревший транзистор КТ818.

Немного подумав, немного изменили оригинал. Повысили емкость на входе схемы, выкинули компоненты измерительной головки и добавили немного защитных диодиков. КТ818 заменили более функциональной парой недорогих транзисторов типа TIP36C, которые соединили параллельно.

Настройку и регулировку схемы блока питания необходимо осуществлять в несколько шагов: Первое включение должно быть без схемы на LM301 и составном транзисторе. Переменным резистором Р3 проверяем, как происходит регулировка напряжения. За это отвечают электронные компоненты LM317, Р3, R4 и R6, С9.

Если регулировка прошла нормально, тогда к схеме подключаем нашу пару транзисторов, желательно их подобрать с максимально близкими параметрами h FE . Для правильной работы схемы параллельно включенным биполярным транзисторам, в эмиттерной цепи должны быть балансировочные сопротивления R7 и R8. Номинал их рекомендуется подбирать, чтобы бы ток проходящий через Т1 был равен току через Т2, при этом сопротивление резисторов должно быть минимально возможным. На данном шаге к выходу самодельного источника можно подсоединить нагрузку, но ни в коем случае не устраивать режим короткого замыкания, иначе транзисторы почти сразу сгорят, скорей всего вместе с LM317.

Следующим шагом подключим схему собранную своими руками на микросхеме LM301. Важно проверить, что на 4-м выводе ОУ имеется потенциал в минус 6 В. Если там плюс, то проверьте подключение диодного моста BR2 и правильность подсоединения электролитического конденсатор С2. Питание операционника LM301 можно взять с выхода БП.

Дальнейшая настройка блока сводится к подгону сопротивления Р1 под максимальный рабочий ток. Как видим, собрать эту схему лабораторного блока питания своими руками достаточно просто, главное не допустить монтажных ошибок.

Мной был использован для схемы старый советский трансформатор ТПП 306-127/220-50 между выводами 3 и 4, 8 и 9 его вторичных обмоток 20 Вольт, при токе до 2,56 А, включив их параллельно получим уже 5,12 А

Конструкцию БП разместил на нескольких макетных платах и запихнул в подходящий самодельный корпус.

Чуть позже в голову пришла идея модернизировать схему и немного расширив рабочий интервал напряжений от 0 В. В принципе, схема лабораторного источника дополнилась лишь небольшим количеством радио компонентов.

Как видим на схеме, та же микросборка LM317 усиленная парой мощных биполярников TIP36C, ограничение и токовая стабилизация также выполнено на LM301. Но добавился стабилизатор 7905 и дополнительный делитель состоящий из резисторов R9 и Р4, который формирует отрицательный потенциал на 1,2 В.

Для регулировки вольтажа с помощью операционного усилителя LM317 он нуля вольт на такой схеме лабораторного блока питания используем опорное стабилизированное напряжение минус 1,2 Вольта.

С учетом того, что отрицательное питание LM301 в нашей схеме и так стабилизированное с помощью стабилизатора 7905, то нам нужно дополнить конструкцию только делителем состоящий из R9 и Р4. А с помощью Р4 уже можно легко получить нужные нам - 1,25 В.

Диоды D3 и D4. D3 защищают вход блока от всплесков обратной полярности, т.к. работа устройства будет происходить в разных условиях эксплуатации. Диод D4 защищает выход микросхемы LM317 от неприятной ситуации, когда потенциал на выходе LM317 превышает напряжение на ее входе.

С помощью резистора Р2 будет доступен токовый интервал от 0 до 5 А.

Для тонкой настройки тока и напряжения можно добавить переменные сопротивления номиналом около 5% от основного регулятора. Например, с Р3 можно последовательно подсоединить переменное сопротивление на 220 Ом, а с Р2 - резистор на 20 кОм.

Чертеж печатной платы в формате Sprint Layout можно взять здесь:

Основа первой схемы лабораторного блока питания является операционный усилитель TLC2272. Выпрямленное напряжение 38 вольт проходя через фильтрующий конденсатором попадает на параметрический стабилизатор. Он собран на транзисторе VT1, диоде VD5 и конденсаторе С2 и сопротивлениях R1, R2. Через этот стабилизатор включен операционный усилитель.


Диоды VD5 и VD8 устанавливать не обязательно Сопротивление резисторов R1 и R5 можно увеличить в три раза. Транзистор VT6 лучше установить кремниевый, например, КТ818В или КТ818Г. Между выводами 7, 1 микросхем DA1 и DA2 и общим проводом желательно установить керамические конденсаторы емкостью 0,1 мкф. Современной заменой транзисторов МП114 и П309 в данном устройстве могут служить КГ502В, КТ502Г и КГ503В, КТ503Г соответственно. Для уменьшения мультипликативных помех каждую половину вторичной обмотки трансформатора Т1 полезно зашунтировать конденсатором емкостью 0,47 мкф.

Наглядное пошаговое руководство по переделки компьютерного БП в мощный лабораторный.

Схема его очень проста, но обеспечивает получение переменного напряжения в диапазоне от 2 до 28В и постоянного напряжения от 3 до 37В. Сетевое напряжение, коммутируемое включателем SA1, через понижающий трансформатор Т1 с многоступенчатой вторичной обмоткой поступает на переключатель SA2, которым выбирается нужный уровень выходного напряжения. Тумблер SA3 служит для включения постоянного или переменного напряжения. При выбранном положении "Переменное" напряжение поступает, на контакты Х2 с включенных секций вторичной обмотки Т1. В положении SA3 "ПОСТ" напряжение выпрямляется диодным мостом VD1- VD4, сглаживается конденсатором С1 и подается на контакты ХЗ. По прибору PV1 контролируется выходное напряжение, светодиод HL1 сигнализирует о включении блока в сеть.

Детали: FU1 -предохранитель на 1...2 A
SA1 - тумблер МТЗ (сдвоенный), но можно использовать однополюсный МТ1
Трансформатор Т1 - самодельный понижающий с 10-ю отводами (1 - 2 В, 2 -6 В, 3 - 8 В, 4-11 В, 5-14 В, 6 - 17 В, 7 - 19 В, 8 - 23 В, 9 - 26 В, 10 - 28 В)
SA2 - галетный переключатель на 11 положений
SA3 - тумблер МТЗ
Диоды VD1...VD4 - КД202Д, установленные на радиаторы,
PV1 - измерительная головка марки М42100. Нужный предел шкалы устанавливается подбором сопротивления R2

Эта схема лабораторного блока питания способна работать с нагрузкой, потребляющей до 1,6 А. Конструкция имеет защиту от перегрузки и КЗ, а также защиту от возможного повышенного напряжения сети, что особенно актуально при проживании в сельской местности.

Напряжение сети через плавкий предохранитель идет на первичную обмотку понижающего трансформатора. Пониженное до 9 В напряжение со второй обмотки проходит на мостовой выпрямитель, на диодах Шотки VD2 - VD5. Пульсации напряжения сглаживаются большой ёмкостью С5, после чего идет на компенсационный стабилизатор напряжения, построенный с использованием дискретных компонентов.


Работа компенсационного стабилизатора: С увеличением входного напряжения или снижением тока нагрузки выходное напряжение пытается увеличиться. Из-за этого транзистор VT3 открывается сильнее, следовательно, сильнее откроется и VT1, который, шунтируя затвор-исток полевого транзистора VT2 и сопротивление канала сток-исток возрастает, напряжение на выходе стабилизатора понижается. Регулировку выходного напряжения осуществляют переменным сопротивлениемс R9. Стабилитрон VD6 защищает полевой транзистор

Тумблером SB2 выбирают диапазон выходных напряжений 1...4 В или 2,3...9 В. Следует отметить, что схем лабораторных блоков питания с низким выходным напряжением от 1 В немного. Тумблером SB1 задают ток срабатывания защиты. Светодиод HL3 сигнализирует о сработавшем самовосстанавливающем предохранителе. Варистор RU1 защищает трансформатор и выпрямитель от возможных всплесков сетевого напряжения.

Сверхъяркие светодиоды HL1 и HL2 говорят о том, что блок питания включен в сеть, а также, являются подсветкой вольтметра.

Вместо микросхемы L7805ACV можно использовать отечественную микросхему КР142ЕН5 А, В, МС7805, МС32267, LM330T-5,0, LM2940T-5,0, LM9073. Вместо стабилизатора L7808CV можно использовать МС7808, UVI2940-8,0

Понижающий трансформатор ТП112-3-1 с напряжением ХХ на вторичной обмотке 11 В можно заменить на ТП114-2, ТП121-17. ТПП112-6. Понижающий трансформатор типа ТПП-224М от старого импульсного блока питания от отечественного компьютера «Электроника МС».

На разработку этого блока питания потребовался один день, за этот же день он был реализован, и весь процесс был снят на видео камеру. Несколько слов о схеме. Это стабилизированный блок питания с регулировкой выходного напряжения и ограничением тока. Схематические особенности позволяют скинуть минимальную грань выходного напряжения до 0,6 Вольт, а минимальных выходной ток в районе 10мА.


Не смотря на простату конструкции, данному блоку питания уступают даже хорошие лабораторные блоки питания со стоимостью 5-6 тысяч рублей!. Максимальный выходной ток схемы 14Ампер, максимальное выходное напряжение до 40 Вольт - больше не стоит.
Довольно плавное ограничение тока и регулировка напряжения. Блок имеет также фиксированную защиту от коротких замыканий, к стати - ток защиту тоже можно выставить (этой функции лишены почти все промышленные образцы) к примеру, если вам нужно, чтобы защита срабатывала при токах до 1 Ампер - то всего лишь нужно настроить такой ток помощью регулятора настройки тока срабатывания. Максимальный ток - 14Ампер, но и это не предел.

В качестве датчика тока задействовал несколько резисторов 5 ватт 0,39Ом подключенных параллельно, но их номинал можно менять, исходя от нужного тока защиты, к примеру - если планируете блок питания с максимальным током не более 1 Ампер, то номинал этого резистора в районе 1Ом при мощности 3Ватт.
При коротких замыканиях падение напряжения на датчике тока достаточно для срабатывания транзистора BD140, При его открывании срабатывает также нижний транзистор - BD139, через открытый переход которого поступает питание на обмотку реле, в следствии чего, реле срабатывает и размыкается рабочий контакт (на выходе схемы). Схема в таком состоянии может находится сколько угодно времени. Вместе с защитой срабатывает также индикатор защиты. Для того, чтобы снять блок с защиты нужно нажать и опустить кнопку S2 по схеме.
Реле защиты с катушкой 24 Вольт с допустимым током 16-20 и более Ампер.
Силовые ключи в моем случае любимые КТ8101 установленные на теплоотвод (дополнительно изолировать транзисторы не нужно, поскольку коллекторы ключей общие). Заменить транзисторы можно на 2SC5200 - полный импортный аналог или на КТ819 с индексом ГМ (железные), при желании также можно задействовать - КТ803, КТ808, КТ805 (в железных корпусах), но максимальный ток отдачи будет не более 8-10 Ампер. Если блок нужен с током не более 5 Ампер, то можно убрать один из силовых транзисторов.
Маломощные транзисторы типа BD139 можно заменить на полный аналог - KT815Г,(можно также - KT817, 805), BD140 - на КТ816Г (можно также КТ814).
Маломощные транзисторы устанавливать на теплоотводы не нужно.

По сути - представлена только схема управления(регулировки) и защиты (рабочий узел). В качестве блока питания я задействовал доработанные компьютерные блоки питания (последовательно соединенные), но можно любой сетевой трансформатор с мощностью 300-400 ватт, во вторичной обмоткой 30-40 Вольт, ток обмотки 10-15 Ампер - это в идеале, но можно трансформаторы и меньшей мощности.
Диодный мост - любой, с током не менее 15 Ампер, напряжение не важно. Можно использовать готовые мосты, стоят они не более 100 руб.
За 2 месяца было собрано и продано свыше 10 таких блоков питания - никаких жалоб. Для себя собрал точно такой БП, и как только я его не мучил - неубиваемый, мощный и очень удобный для любых дел.
Если есть желающие стать владельцем такого БП, то могу сделать под заказ, свяжитесь со мной по адресу

С уважением - АКА КАСЬЯН

Сергей Никитин

Простой лабораторный блок питания.

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств.
Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания.

Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.
По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе.
Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки. Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя.

Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные. Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей.
Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825.

Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри.
Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24.
Далее берётся медный провод, диаметром 1,0 - 1,5 мм и мотается до заполнения окна сердечника полностью.
У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.
Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 - 5 слоёв обычной писчей бумаги).

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт. Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше - залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук "цикания" .

Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува.

Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно.

На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это "временно" уже довольно долго работает.
Можно в схему ещё добавить амперметр для удобства. Но это дело личное. Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель "Напряжение" - "Ток". На схеме это просто не показал.

просмотров