Описание динистора db3. Как его проверить? Электрические схемы бесплатно

Описание динистора db3. Как его проверить? Электрические схемы бесплатно

Тиристор представляет собой четырехслойное полупроводниковое устройство, транзисторный эквивалент которого можно представить схемой, изображенной на Рисунке 1а.

Устройство остается в выключенном состоянии до тех пор, пока через управляющий электрод 1 (далее называемый «затвор») не будет пропущен положительный импульс тока. После этого четырехслойная структура между анодом и катодом включается, и ток управляющего электрода становится больше не нужным. Для включения тиристора здесь может с равным успехом использоваться и база Q2, однако в монолитных тиристорах обычно используется только один управляющий электрод возле катодной области.

Более реалистичная транзисторная модель, показанная на Рисунке 1б, содержит резисторы между переходами база-эмиттер обоих транзисторов. В результате исключается возможность нежелательного включения токами утечек Q1 и Q2, и ток затвора имеет определенное значение, равное

Одним из общих ограничений тиристоров является скорость нарастания анодного напряжения, которая, в случае превышения определенного порога, становится причиной включения тиристора даже при нулевом токе затвора. Такое напряжение возникает на стороне коммутируемой индуктивной нагрузки в то время, когда ток анода, стремясь к нулю, падает ниже уровня удержания. При этом накопленная в индуктивности энергия стремится резко поднять напряжение на аноде. Напряжение с большой крутизной нарастания возникает также при коммутации резистивных нагрузок комбинацией из двух (как минимум) тиристоров, соединенных подобно аналоговому мультиплексору, когда включение одного из тиристоров вызывает резкое повышение анодного напряжения на другом тиристоре.

Для схемы на Рисунке 1б критическим значением скорости нарастания коммутируемого напряжения будет:

(1)

где
V BE0 ≈ 0.7 В, типичное напряжение, при котором открывается кремниевый транзистор,
C CB01 и C CB02 - емкости коллектор-база транзисторов Q1 и Q2.

В связи с тем, что емкости этих конденсаторов уменьшаются с ростом напряжения коллектор-эмиттер, в уравнении (1) следует использовать максимальные значения емкостей. Для транзисторов, использованных в схеме на Рисунке 2, емкости можно оценить величиной C CB01 + C CB02 < 20 пФ. При R B1 = R B2 = 6.8 кОм это дает S Vcrit ≈ 5 В/мкс, что значительно меньше типичной для монолитных тиристоров скорости, достигающей S Vcrit ≈ 100 В/мкс. Ситуацию могло бы исправить снижение сопротивлений резисторов R B1 и R B2 , однако за это пришлось бы заплатить потерей чувствительности затвора. (Изображенная на Рисунке 1б схема может быть сделана настолько чувствительной, что для ее включения будет достаточно тока порядка 100 мкА - одной десятой от тока управления, типичного для маломощных монолитных тиристоров).

Однако есть способ, показанный на Рисунке 1в, который позволяет увеличить критическую скорость нарастания напряжения, сохранив низкий отпирающий ток затвора. Если параллельно переходам база-эмиттер NPN и PNP транзисторов включить по конденсатору C, критическую скорость нарастания, теоретически, можно сделать бесконечной. Величина емкости C равна:

Допустив, что I Bmax = 200 мА, из уравнения (3) мы получим вполне правдоподобное значение S Vcrit ≈ 100 кВ/мкс.

В результате экспериментов для схемы на Рисунке 2 был выбран PNP транзистор , отличающийся самым уверенным и надежным переключением. Его максимальный базовый ток равен 500 мА, а максимальный ток коллектора - 1 А. При скачкообразных изменениях напряжения на аноде изображенного на Рисунке 2 дискретного тиристора (∆V = 9 В за 30 нс, или 300 В/мкс) не произошло ни одного включения.

  1. J. L. Moll, M. Tanenbaum, J. M. Goldley and N. Holonyak, «p-n-p-n Transistor Switches», Proc. IRE 44, 1174 (1956)

♦ Как мы уже выяснили – тиристор, это полупроводниковый прибор, обладающий свойствами электрического вентиля. Тиристор с двумя выводами (А — анод, К — катод) , это динистор. Тиристор с тремя выводами (А – анод, К – катод, Уэ – управляющий электрод) , это тринистор, или в обиходе его называют просто тиристор.

♦ С помощью управляющего электрода (при определенных условиях) можно изменять электрическое состояние тиристора, то есть переводить его из состояния «выключено» в состояние «включено».
Тиристор открывается в случае, если приложенное напряжение между анодом и катодом превысит величину U = Uпр , то есть величину напряжения пробоя тиристора;
Тиристор можно открыть и при напряжении меньше, чем Uпр между анодом и катодом (U < Uпр) , если подать импульс напряжения положительной полярности между управляющим электродом и катодом.

♦ В открытом состоянии тиристор может находиться сколько угодно долго, пока на него подано питающее напряжение.
Тиристор можно закрыть:

  • — если уменьшить напряжение между анодом и катодом до U = 0 ;
  • — если снизить анодный ток тиристора до величины, меньше тока удержания Iуд .
  • — подачей запирающего напряжения на управляющий электрод, (только для запираемых тиристоров).

Тиристор может также находиться в закрытом состоянии сколько угодно долго, до прихода запускающего импульса.
Тиристоры и динисторы работают как в цепях постоянного, так и в цепях переменного тока.

Работа динистора и тиристора в цепях постоянного тока.

Рассмотрим несколько практических примеров.
Первый пример применения динистора, это релаксационный генератор звуковых сигналов .

В качестве динистора используем КН102А-Б.

♦ Работает генератор следующим образом.
При нажатии кнопки Кн , через резисторы R1 и R2 постепенно заряжается конденсатор С (+ батареи – замкнутые контакты кнопки Кн – резисторы – конденсатор С – минус батареи).
Параллельно конденсатору подключена цепочка из телефонного капсюля и динистора. Через телефонный капсюль и динистор ток не протекает, так как динистор еще «заперт».
♦ При достижении на конденсаторе напряжения, при котором пробивается динистор, через катушку телефонного капсюля проходит импульс тока разряда конденсатора (С – катушка телефона – динистор — С). Слышен щелчок из телефона, конденсатор разрядился. Далее снова идет заряд конденсатора С и процесс повторяется.
Частота повторения щелчков зависит от емкости конденсатора и величины сопротивления резисторов R1 и R2 .
♦ При указанных на схеме номиналах напряжения, резисторов и конденсатора, частоту звукового сигнала с помощью резистора R2 можно менять в пределах 500 – 5000 герц. Телефонный капсюль необходимо использовать с низкоомной катушкой 50 – 100 Ом , не более, например телефонный капсюль ТК-67-Н .
Телефонный капсюль необходимо включать с соблюдением полярности, иначе не будет работать. На капсюле есть обозначение +(плюс) и – (минус).

♦ У этой схемы (рис 1) есть один недостаток. Из-за большого разброса параметров динистора КН102 (разное напряжение пробоя), в некоторых случаях, нужно будет увеличить напряжение источника питания до 35 – 45 вольт , что не всегда возможно и удобно.

Устройство управления, собранное на тиристоре, для включения – выключения нагрузки с помощью одной кнопки показано на рис 2.


Устройство работает следующим образом.
♦ В исходном состоянии тиристор закрыт и лампочка не горит.
Нажмем на кнопку Кн в течении 1 – 2 секунды . Контакты кнопки размыкаются, цепь катода тиристора разрывается.

В этот момент конденсатор С заряжается от источника питания через резистор R1 . Напряжение на конденсаторе достигает величины U источника питания.
Отпускаем кнопку Кн .
В этот момент конденсатор разряжается по цепи: резистор R2 – управляющий электрод тиристора – катод — замкнутые контакты кнопки Кн – конденсатор.
В цепи управляющего электрода потечет ток, тиристор «откроется» .
Загорается лампочк а по цепи: плюс батареи – нагрузка в виде лампочки – тиристор — замкнутые контакты кнопки – минус батареи.
В таком состоянии схема будет находиться сколько угодно долго .
В этом состоянии конденсатор разряжен: резистор R2, переход управляющий электрод – катод тиристора, контакты кнопки Кн.
♦ Для выключения лампочки необходимо кратковременно нажать на кнопку Кн . При этом основная цепь питания лампочки обрывается. Тиристор «закрывается» . Когда контакты кнопки замкнутся, тиристор останется в закрытом состоянии, так как на управляющем электроде тиристора Uynp = 0 (конденсатор разряжен).

Мною опробованы и надежно работали в этой схеме различные тиристоры: КУ101, Т122, КУ201, КУ202, КУ208 .

♦ Как уже упоминалось, динистор и тиристор имеют свой транзисторный аналог .

Схема аналога тиристора состоит из двух транзисторов и изображена на рис 3 .
Транзистор Тр 1 имеет p-n-p проводимость, транзистор Тр 2 имеет n-p-n проводимость. Транзисторы могут быть как германиевые, так и кремниевые.

Аналог тиристора имеет два управляющих входа.
Первый вход: А – Уэ1 (эмиттер — база транзистора Тр1).
Второй вход: К – Уэ2 (эмиттер – база транзистора Тр2).

Аналог имеет: А – анод, К — катод, Уэ1 – первый управляющий электрод, Уэ2 – второй управляющий электрод.

Если управляющие электроды не использовать, то это будет динистор, с электродами А — анод и К — катод .

♦ Пару транзисторов, для аналога тиристора, надо подбирать одинаковой мощности с током и напряжением выше, чем необходимо для работы устройства. Параметры аналога тиристора (напряжение пробоя Unp, ток удержания Iyд) , будут зависеть от свойств применяемых транзисторов.

♦ Для более устойчивой работы аналога в схему добавляют резисторы R1 и R2 . А с помощью резистора R3 можно регулировать напряжение пробоя Uпр и ток удержания Iyд аналога динистора – тиристора. Схема такого аналога изображена на рис 4 .

Если в схеме генератора звуковых частот (рис 1) , вместо динистора КН102 включить аналог динистора, получится устройство с другими свойствами (рис 5) .

Напряжение питания такой схемы составит от 5 до 15 вольт . Изменяя величины резисторов R3 и R5 можно изменять тональность звука и рабочее напряжение генератора.

Переменным резистором R3 подбирается напряжение пробоя аналога под используемое напряжение питания.

Потом можно заменить его на постоянный резистор.

Транзисторы Тр1 и Тр2: КТ502 и КТ503; КТ814 и КТ815 или любые другие.

♦ Интересна схема стабилизатора напряжения с защитой от короткого замыкания в нагрузке (рис 6) .

Если ток в нагрузке превысит 1 ампер , сработает защита.

Стабилизатор состоит из:

  • — управляющего элемента– стабилитрона КС510 , который определяет напряжение выхода;
  • — исполнительного элемента–транзисторов КТ817А, КТ808А , исполняющих роль регулятора напряжения;
  • — в качестве датчика перегрузки используется резистор R4 ;
  • — исполнительным механизмом защиты используется аналог динистора, на транзисторах КТ502 и КТ503 .

♦ На входе стабилизатора в качестве фильтра стоит конденсатор С1 . Резистором R1 задается ток стабилизации стабилитрона КС510 , величиной 5 – 10 мА. Напряжение на стабилитроне должно быть 10 вольт .
Резистор R5 задает начальный режим стабилизации выходного напряжения.

Резистор R4 = 1,0 Ом , включен последовательно в цепь нагрузки.Чем больше ток нагрузки, тем больше на нем выделяется напряжение, пропорциональное току.

В исходном состоянии, когда нагрузка на выходе стабилизатора мала или отключена, аналог тиристора закрыт. Приложенного к нему напряжения 10 вольт (от стабилитрона) не хватает для пробоя. В этот момент падение напряжения на резисторе R4 почти равно нулю.
Если постепенно увеличивать ток нагрузки, будет увеличиваться падение напряжения на резисторе R4 . При определенном напряжении на R4, аналог тиристора пробивается и установится напряжение, между точкой Тчк1 и общим проводом, равное 1,5 — 2,0 вольта .
Это есть напряжение перехода анод — катод открытого аналога тиристора.

Одновременно загорается светодиод Д1 , сигнализируя об аварийной ситуации. Напряжение на выходе стабилизатора, в этот момент, будет равно 1,5 — 2,0 вольта .
Чтобы восстановить нормальную работу стабилизатора, необходимо выключить нагрузку и нажать на кнопку Кн , сбросив блокировку защиты.
На выходе стабилизатора вновь будет напряжение 9 вольт , а светодиод погаснет.
Настройкой резистора R3 , можно подобрать ток срабатывания защиты от 1 ампера и более . Транзисторы Т1 и Т2 можно ставить на один радиатор без изоляции. Сам же радиатор изолировать от корпуса.

Что такое динистор и тиристор?


♦ Тиристор – полупроводниковый прибор на основе монокристалла полупроводника с многослойной структурой типа p –n –p – n обладает свойствами управляемого электрического вентиля. В качестве полупроводника обычно применяют кремний.

Обычно тиристор имеет три вывода: два из них (катод и анод) контактируют с крайними областями монокристалла, а третий вывод – управляющий. Такой управляемый тиристор называется иногда триодным, или тринистором.

Неуправляемый тиристор, имеющий всего два вывода (анод — катод), называется диодным тиристором или динистором.

Четырехслойная структура тиристора изображена на рис 1.

На рисунке 2 — его транзисторный аналог.

♦ Вольт-амперная характеристика, ВАХ динистора, имеет вид на рисунке 3.

Устойчивое состояние (точка D на ВАХ ) достигается в результате перехода транзисторов тиристора в режим насыщения. Падение напряжения на открытом динисторе — тиристоре составляет около 1,5 – 2,0 вольта.

Если на анод подать положительное напряжение относительно катода, то крайние электронно-дырочные переходы П1 и П3 оказываются смещенными в прямом направлении, а центральный переход П2 в обратном.

С увеличением анодного напряжения , ток через динистор сначала растет медленно (участок А — В на ВАХ) . Сопротивление перехода П2 , в этом режиме еще велико, это соответствует запертому состоянию динистора.

При некотором значении напряжения (участок В — С на ВАХ) . называемым напряжением переключения Uпер (напряжение лавинного пробоя перехода П2), динистор переходит в проводящее состояние.
В цепи устанавливается ток (участок D – E на ВАХ) , определяемый сопротивлением внешней цепи Rн и величиной приложенного напряжения U (рис 2).

Напряжение пробоя динистора, в зависимости от экземпляра, изменяется в широких пределах и имеет значения порядка десятков и сотен вольт.
На вольт – амперной характеристике, ВАХ (рис 3.) , обозначены участки:

- А – В участок в прямом включении, здесь динистор заперт и приложенное к его выводам напряжение меньше, чем необходимо для возникновения лавинного пробоя;
- В – С участок пробоя коллекторного перехода;
- C — D участок отрицательного сопротивления;
— D — E участок открытого состояния динистора (динистор включен).

Динистор имеет два устойчивых состояния:
— заперт (А – В)

— открыт (D — E)

В участке A – D – E явно просматривается кривая ВАХ диода .

♦ Тиристор имеющий три электрода – анод, катод и управляющий электрод – называется тринистором или просто тиристором.Четырех слойная структура типа p – n – p – n является единой для тиристора – динистора. Просто, у динистора отсутствует дополнительный вывод управляющего электрода.
При подаче тока в цепь управляющего электрода, тиристор переключается в открытое состояние при меньших значениях напряжения переключения Uпер .

Если каким-то образом уменьшать ток, проходящий через динистор — тиристор, то при некотором его значении (точка D на ВАХ ) тиристор закроется.
Минимальный ток, при котором тиристор — динистор переходит из открытого в закрытое состояние (при токе управляющего электрода Iу =0 ) называется током удержания Iуд .
Если через управляющий электрод тиристора пропустить отпирающий ток, то тиристор перейдёт в открытое состояние.
Включение транзисторного аналога тиристора (рис 2) можно осуществить по двум входам: между электродами (Э1 –Б1) , либо между электродами (Э2 – Б2) .

♦ Вольтамперная характеристика тиристора (Рис 4), похожа на вольтамперную характеристику динистора.

Однако отпирание тиристора обычно происходит при существенно более низкомнапряжении, чем необходимо динистору. К раннему открыванию тиристора приводит протекание тока через управляющий электрод. Чем больше ток управляющего электрода от Iy1 до Iy4 , тем при более низкомнапряжении Ua тринистор перейдёт в открытое состояние. Это отражено на вольтамперной характеристике тиристора.

♦ Тиристоры изготавливают на разные мощности: маломощные (ток 50 мА. – 100 мА) , средней мощности (ток до 20 ампер ) и большой мощности (токи 20 – 10000 ампер) и величины напряжения от нескольких вольт до 10 тысяч вольт .

♦ По назначению и принципу действия тиристоры делятся на: запираемые, быстродействующие, импульсные, симметричные и фототиристоры. Тиристор и динистор пропускают ток только в одном направлении – от анода к катоду.

♦ В настоящее время появились двунаправленные динисторы (пропускают ток в обоих направлениях) и двунаправленные тиристоры (симисторы).


Симистор имеет в своем составе как бы два тиристора, включенных встречно, с управлением от одного управляющего электрода. ВАХ (вольт — амперная характеристика) симистора представлена на рис 5.
Она имеет две одинаковые ветви. При положительном полупериоде сетевого напряжения действует правая ветвь, при отрицательном полупериоде – левая.

На управляющий электрод, относительно катода, также подается соответственно то положительное, то отрицательное управляющее напряжение.
В схемах управления, симистор может заменить два тиристора.

♦ Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений.
Наличие двух устойчивых состояний (включен — выключен), а также низкая мощность рассеяния тиристора, обусловили широкое использование их в различных устройствах.

Тиристоры применяются в регулируемых источниках питания, генераторах мощных импульсов, в линиях передачи энергии постоянного тока, в системах автоматического управления и т.д.

Внешний вид тиристора и его обозначение на схемах:


Что такое динистор и тиристор, выды тиристоров и их вольт — амперные характеристики, работа динисторов и тиристоров в цепях постоянного и переменного тока, транзисторные аналоги динистора и тиристора.

А так же: способы управления электрической мощностью переменного тока, фазовый и импульсно-фазовый методы.

Каждый теоретический материал подтверждается практическими примерами.
Приводятся действующие схемы: релаксационного генератора и фиксированной кнопки, реализованных на динисторе и его транзисторном аналоге; схема защиты от короткого замыкания в стабилизаторе напряжения и многое другое.

Особенно интересна для автолюбителей схема зарядного устройства для аккумулятора на 12 вольт на тиристорах.
Приводятся эпюры формы напряжения в рабочих точках действующих устройств управления переменным напряжением при фазовом и импульсно-фазовом методах.

Чтобы получить эти бесплатные уроки подпишитесь на рассылку, заполните форму подписки и нажмите кнопку «Подписаться».

Наряду с приборами, предназначенными для линейного усиления сигналов, в электронике, в вычислительной технике и особенно в автоматике широкое применение находят приборы с падающим участком вольт-амперной характеристики. Эти приборы чаще всего выполняют функции электронного ключа и имеют два состояния: закрытое, характеризующееся высоким сопротивлением; и открытое, характеризующееся минимальным сопротивлением.

Рассмотрим работу диода, состоящего из четырех чередующихся -слоев (Рис. 1.26).

Если в устройстве нет возможности установить требуемый динис- тор, можно пойти по другому пути и собрать схему, приведенную на Рис. 1.28.

Электронные устройства с динисторами (многие из этих устройств являются источниками питания и преобразователями напряжения) имеют такие преимущества; как малая рассеиваемая мощность и высокая стабильность выходного напряжения. Одним из недостатков является ограниченный выбор выходных напряжений, обусловленный напряжением включения (открывания) динисторов. Устранение этого недостатка - задача разработчиков и производителей современной элементной базы динисторов.

Снабдим одну из баз динистора, например щ, внешним выводом и используем этот третий электрод для задания дополнительного тока через переход р\-щ. Для реальных четырехслойных структур характерна различная толщина баз. В качестве управляющей используется база, у которой коэффициент передачи оц близок к единице. В этом случае прибор будет обладать свойствами тиратрона. Для такого прибора, или тиристора, используется та же терминология, что и для обычного транзистора: выходной ток называется коллекторным, а управляющий - базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой, в данном случае - п 2 .

При увеличении управляющего тока Iq напряжение прямого переключения уменьшается, отчасти возрастает ток прямого переключения и уменьшается ток обратного переключения. В результате отдельные кривые с ростом тока 1(, как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой).

Мощные используются в качестве контакторов, коммутаторов тока, а также в преобразователях постоянного напряжения, инверторах и выпрямительных схемах с регулируемым выходным напряжением.

Время переключения у тиристоров значительно меньше, чем у тиратронов. Даже у мощных приборов (с токами в десятки ампер и больше) время прямого переключения составляет около 1 мкс, а время обратного переключения не превышает 10…20 мкс. Наряду с конечной длительностью фронтов напряжения и тока имеют место задержки фронтов по отношению к моменту подачи управляющего импульса. Наряду с мощными тиристорами разрабатываются и маломощные варианты. В таких приборах время прямого переключения составляет десятки, а время обратного переключения - сотни наносекунд. Столь высокое быстродействие обеспечивается малой толщиной слоев и наличием электрического поля в толстой базе. Маломощные быстродействующие используются в различных спусковых и релаксационных схемах.

Схема аналога тиристора (диодного и триодного) на транзисторах. Расчет параметров он-лайн. (10+)

Транзисторный аналог тиристора

В маломощных пороговых и нестандартных схемах транзисторные аналоги диодного (динистора) и триодного (тринистора) тиристоров применяются даже чаще, чем элементы, выполненные в одном кристалле. Причина в том, у серийных тиристоров высокий разброс параметров, а некоторые из очень важных для перечисленных схем параметров вообще не нормируются. А аналог можно изготовить со строго заданными параметрами.

Важнейшими параметрами тиристоров в пороговых и нестандартных схемах являются: ток отпирания (Io ), напряжение отпирания или отпирающее напряжение (Uo ), ток удержания (Ih ), напряжение запирания или напряжение насыщения при токе удержания (Uc ). Смотри вольт-амперную характеристику тиристора .

В силовых схемах аналоги не применяются потому, что сила тока базы каждого транзистора в тиристорном аналоге равна половине всего тока через схему. А у транзисторов, как правило, сила тока базы ограничена довольно небольшой величиной.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.

В былые времена, когда требовалось выполнять переключения в электрических цепях при возрастании напряжения до некоторого порогового уровня, прибегали к использованию поляризованных электромагнитных реле. Однако существенные габариты и масса, недостаточная надежность кинематики и контактных пар сильно ограничивали применение этих устройств. Нынче на смену им пришли миниатюрные бесконтактные приборчики, именуемые динисторами. Это четырехслойные полупроводниковые диоды, структура которых представляет собой как бы два транзистора: p-n-p и n-p-n типа, причем база одного соединена с коллектором второго, образуя внутренние положительные обратные связи (рис. 1).

Пока приложенное к динистору напряжение Uo невелико, оба транзистора заперты. В результате, общее сопротивление прибора - порядка сотен кОм. Однако при напряжении, несколько превышающем Uо, возросший микроток из коллектора одного транзистора, втекая в базу второго, приоткрывает его.

Вынужденное увеличение тока коллектора второго транзистора усиленно воздействует на базу первого, также приоткрывая его. Этот лавинообразно нарастающий процесс приводит к полному отпиранию всей транзисторной пары, и динистор переходит в проводящее состояние (то есть сопротивление его падает до долей Ома).

Наглядной иллюстрацией может служить вольт-амперная характеристика динистора. Сразу же обращает на себя внимание восходящая ветвь АБ, характеризующая напряжение Uэс, которое данный прибор выдерживает, не теряя закрытого состояния. Ему соответствует нормируемый ток утечки Iэс.

Видно, что при увеличении напряжения на динисторе до порогового уровня (Uвкл) рабочая точка «соскальзывает» по участку БВ характеристики в проводящее состояние (круто идущая вверх линия ВГ), где ток становится максимальным, равным Ioc. Ограничивается он допустимым нагревом, лимитируемым сопротивлением внешнего резистора.

Важным параметром для динистора является минимальный прямой ток удержания Iуд (точка В), ниже которого происходит самовыключение прибора. К числу основных технических характеристик при перемене полярности, несомненно, относятся также обратные напряжение Uо6р и ток Iобр. Для отечественных динисторов самой, пожалуй, распространенной серии КН102 характерны: Iос 200 мА, Uос 1,5 В, Iуд 0,1-15 мА, Iэс 0,15мА,Iобр 0,5 мА. Обозначаемые буквами модификации этих приборов отличаются лишь величинами Uэс, Uобр, Uвкл (см. таблицу). Не лишне также знать, что в реальности показатель Uвкл имеет разброс, нижняя граница которого примерно вдвое ниже обычно публикуемых типовых паспортных данных.

Из сказанного выше ясно: для того, чтобы перевести динистор в выключенное состояние, нужно кратковременно прервать его ток, либо уменьшить (по сравнению с табличным значением Iуд) протекающий через него ток. Конфигурация и габариты всех представителей серии КН102 (рис. 1) аналогичны выпрямительным диодам Д226.

На основе динисторов можно собрать множество устройств: от простейших мультивибраторов и триггеров до сложных конструкций, рассчитанных на опытных радиолюбителей. Публикуемая ниже разработка ориентирована в первую очередь на начинающих самодельщиков. Это нужная в быту (особенно, если дом или дача газифицированы) электронная зажигалка.

Как видно из принципиальной электрической схемы (рис. 2), в состав рекомендуемого устройства входят помехозащитный фильтр C1R1C2R2, включаемый кнопкой SB1 двухдиодный выпрямитель с накопительным конденсатором C3, динистор VS1, импульсный трансформатор Т1 и коаксиальный элемент поджига. Работая в так называемом режиме удвоения, выпрямитель заряжает от бытовой осветительной сети накопительный конденсатор. И когда напряжение на С3 достигнет уровня Uвкл динистора VS1, последний переходит в проводящее состояние. Накопительный конденсатор тут же разряжается на первичную обмотку I импульсного трансформатора Т1. Соответственно, во вторичной обмотке II индуцируется высоковольтный импульс, и между коаксиальными электродами S1, S2 происходит искровой пробой, поджигающий газ из горелки.

Магнитопроводом импульсного трансформатора является ферритовый стержень диаметром 8 мм и длиной около 60 мм. Марка феррита - 400НН. Сначала такой магнитопровод обматывают двумя слоями изоленты. Затем размещают вторичную обмотку, которая содержит 1800 витков провода ПЭВ2-0,08. Далее следуют два новых слоя изоленты, и уже на них укладывают первичную обмотку (десять витков провода ПЭВ2-0,5) Элемент поджига представляет собой металлическую трубку (электрод S1) диаметром до 8 мм со сквозными пропилами, в которой соосно размещается отрезок вязальной спицы (электрод S2). Коаксиальность обеспечивается двумя шайбами-вставками из огнестойкого диэлектрика

Приобретя опыт при изготовлении электронной зажигалки, можно переходить к более сложным схемам, где динистор играет не менее важную роль. Например, в устройстве (рис. 3), позволяющем своевременно заметить ослабление изоляции, скажем, в холодильнике, стиральной машине или любом другом бытовом электроприборе. Включенное между металлическим корпусом используемой техники и «землей», в качестве которой может выступать, например, стальная труба водопровода, оно своевременно просигнализирует о появлении нежелательных 30 В - спутника стареющего электрооборудования.

Указанный уровень напряжения не случаен. Именно он признан еще безопасным для человека, но уже достаточным, чтобы судить о неблагополучии с изоляцией и желательности своевременного ремонта. Поэтому когда на корпусе контролируемой бытовой техники появляется 30 В, динистор VS1 устройства срабатывает, быстро разряжая конденсатор С1 на резистор R2. Возникающий при этом всплеск напряжения кратковременно отпирает транзистор VT1 (КТ3107А), в коллекторной цепи которого - светодиод НИ красного свечения (АЛ307Б).

Поскольку контролируемое переменное напряжение, поступая на схему, становится благодаря диоду VD1 (КД105Б) однополупериодным, постольку после разрядки конденсатора С1 (20 мкФ, 100 В) ток через динистор КН102Б прекращается. Но начинается очередной цикл заряда С1.

Изложенный процесс циклически повторяется с частотой сигнальных вспышек около 1 Гц. Цепь SB1R4 вводится для проверки работоспособности батареи (типа 3R12) путем принудительного отпирания транзистора.

В комплектацию устройства, помимо уже упомянутых радиодеталей, входят МЛТ-0,5 (R1) и МЛТ-0,25 (остальные резисторы), конденсатор К50-29, кнопка однополюсного включения и микротумблер (например, от старого карманного приемника). Большинство из них размещается на монтажной плате из односторонне фольгированного пластика толщиной 1,5 мм. Требуемая конфигурация псевдопечатных проводников достигается прорезанием изолирующих бороздок в токопроводящем слое.

А вот - самодельная конструкция для тех, кто вынужден пользоваться спаренным телефоном. В ее ценности убеждаешься, когда нужно позвонить, а линия, допустим, занята не в меру говорливым соседом. Оперативно получать достоверную информацию о том, что линия освободилась, не поднимая трубку на телефонном аппарате, помогает автоматический извещатель, собранный согласно принципиальной электрической схеме (рис. 4).

Дело в том, что при занятой линии напряжение на вводе в заблокированный аппарат равно нулю, но возрастает примерно до 40 В, когда линия освобождается. На это и реагирует динистор VS1, присоединенный к «плюсовому» проводу линии через цепочку C1R4, электрические параметры которой аналогичны цепи телефонного звонка.

Скачок линейного напряжения преобразуется благодаря конденсатору С1 в одиночный импульс, способный кратковременно отпирать динистор. Как раз такое состояние и фиксируется током, который будет Поступать от батареи GB1 через VS1 и HL1. В итоге - ровное сияние светодиода - своеобразное приглашение к тому, чтобы снять трубку аппарата и выключить не нужный более извещатель.

Роль диода VD1 - не пропустить к батарее сравнительно высоковольтный импульс от линии. Если нет подходящего динистора, то его можно заменить аналогом, собранным на транзисторах VT1 и VT2, показанным на принципиальной электрической схеме рядом с VS1.

Изготовить монтажную плату из фольгированного гетинакса или текстолита размерами 28x25x1,5 мм, думается, не составит особых трудностей. Найдутся и конденсатор К73-9 требуемой емкости, резисторы МЛТ-0,25 нужных номиналов, гальваническая батарея типа 3R12… При наличии внутри корпуса телефона достаточного места плату со смонтированными на ней радиодеталями можно разместить в самом аппарате, выведя наружу светодиод и головку микротумблера. Ну а в качестве источника электропитания использовать батарею, составленную из трех малогабаритных гальванических элементов типа R03 или миниатюрных СЦ-18.

П. ЮРЬЕВ

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

просмотров