Как прозвонить кварцевый резонатор. Как проверить кварцевый резонатор

Как прозвонить кварцевый резонатор. Как проверить кварцевый резонатор

Кварцевые резонаторы, как и большинство других радиокомпонентов, желательно проверить на работоспособность перед их использованием в радиолюбительской практике. Одна из простейших схем такого пробника была опубликована в чешском радиолюбительском журнале. Схема пробника предельно проста в повторении, поэтому представляет интерес для широкого круга радиолюбителей.

Схема кварцевого резонатора

Кварцевые резонаторы относятся к простейшим радиокомпонентам, но у радиолюбителей практически нет приборов для их проверки перед использованием. Это подчас приводит к недоразумениям. Внешне никаких повреждений кварцевый резонатор может не иметь, а в схеме не работает. Причин этому может быть много. В частности, одна из них — падение резонатора из-за неосторожного обращения. Произвести первичную проверку кварцевых резонаторов еще до их использования поможет простая конструкция, описанная в .

Проверяемый кварцевый резонатор подключается к контактам К2 (рис.1). На транзисторе Т1 выполнен широкодиапазонный генератор. Он рассчитан на проверку кварцев, рабочая частота которых находится в диапазоне 1…50 МГц. Несколько изменив параметры некоторых радиокомпонентов схемы, в частности. С2 и СЗ. можно проверять и другие кварцы.

В том случае, если кварцевый резонатор работоспособен. на эмиттере транзистора Т1 присутствует высокочастотное переменное напряжение. Диодами D1, D2 оно выпрямляется, сглаживается конденсатором С5 и подается на базу ключевого транзистора Т2, отпирая его. При этом светится светодиод LD1.

Современная цифровая аппаратура нуждается в высокой точности, поэтому часто в цифровых устройствах содержится кварцевый резонатор, который является стабильным и надежным генератором гармонических колебаний. Цифровые работают на основе этой постоянной частоты, и используют ее для работы цифрового прибора. Кварцевые резонаторы являются надежной заменой контура колебаний, собранного на конденсаторе и катушке индуктивности.

Добротность контура колебаний на основе катушки и конденсатора не превышает 300. Она является характеристикой контура колебаний, определяющей величину полосы резонанса. Добротность показывает, во сколько раз энергия колебательной системы превышает потери энергии в течение одного периода колебаний. Чем больше добротность, тем меньше теряется энергии за один период, и медленнее затухают колебания. Емкость конденсатора в обычном контуре колеблется в зависимости от температуры среды. Величина индуктивности катушки также зависит от многих факторов. Существуют даже соответствующие коэффициенты, определяющие зависимость параметров этих элементов от температуры.

Кварцевые резонаторы, в отличие от вышеописанных контуров колебаний, обладают очень большой добротностью, достигающей значения в несколько миллионов. При этом температура в пределах -40 +70 градусов никак не влияет на этот параметр. Высокая стабильность работы кварцевых резонаторов при любой температуре послужила их широкому применению в цифровой электронике и радиотехнике.

Разновидности

По типу корпуса:
  • Для объемной установки (цилиндрические и стандартные).
  • Для поверхностного монтажа.
По материалу корпуса:
  • Металлические.
  • Стеклянные.
  • Пластиковые.
По форме корпуса:
  • Круглые.
  • Прямоугольные.
  • Цилиндрические.
  • Плоские.
По количеству резонансных систем:
  • Одинарные.
  • Двойные.
По защите корпуса:
  • Герметичные.
  • Негерметизированные.
  • Вакуумные.
По назначению:
  • Фильтровые.
  • Генераторные.

Важным свойством кварцевых резонаторов для успешной работы является их активность. Но она не определяется только собственными свойствами. Вся электрическая схема влияет на его активность.

В резонаторах, используемых в фильтрах, применяются такие же виды колебаний, как и в генераторных резонаторах. В фильтрах используются 2-х и 4-х электродные вакуумные резонаторы. Для многозвенных фильтров чаще всего применяются 4-х электродные, так как они более экономичные.

Принцип действия и устройство

Кварцевые резонаторы работают на основе пьезоэлектрического эффекта, образующегося на кварцевой пластинке. Кварц – это природный кристалл. Он представляет собой модификацию соединения кремния с кислородом, и имеет химическую формулу Si O 2 . Массовая доля кварца в земной коре составляет около 60%, в свободном виде 12%. В других минералах также может содержаться кварц.

Для производства кварцевых резонаторов используют низкотемпературный кварц. Он обладает выраженным пьезоэлектрическим эффектом. Химическая устойчивость кварца очень высока, растворить кварц способна только гидрофторидная кислота. По твердости кварц стоит на втором месте после алмаза. Кварцевую пластинку для резонатора изготавливают путем вырезания из кварца кусочка под заданным определенным углом. В зависимости от этого угла среза кварцевая пластинка отличается разными электромеханическими параметрами.

В результате образуется колебательный контур, обладающий собственной частотой резонанса, определяющей работу всего резонатора. Если к электродам пластинки приложить переменное напряжение с частотой резонанса, то возникнет резонансный эффект, а амплитуда колебаний пластинки значительно повысится. При этом резонатор уменьшит свое сопротивление на значительную величину. Этот процесс подобен тому процессу, который происходит в контуре колебаний последовательного вида (на основе катушки и конденсатора). Потери энергии при возбуждении кварцевого резонатора на частоте резонанса очень малы, так как добротность кварцевого контура колебаний очень высока.

Эта эквивалентная схема состоит из:
  • R – Сопротивление.
  • С1 – Емкость.
  • L – Индуктивность.
  • С2 – Статическая электрическая емкость пластинок вместе с держателями.

Эти элементы определяют электромеханические параметры кварцевой пластинки. Если удалить монтажные элементы, получается последовательный контур . При установке на монтажную плату, кварцевый резонатор не переносит чрезмерного нагрева, так как его конструкция очень хрупкая. Сильное нагревание может деформировать держатель и электроды, что отражается на функционировании готового кварцевого резонатора. Кварц полностью теряет свои свойства пьезоэлектрика при нагревании до температуры 5370 градусов. Однако паяльник не способен так сильно разогреваться.

На электрических схемах кварцевый резонатор обозначается по аналогии с конденсатором, но между пластин изображен прямоугольник, символизирующий кварцевую пластинку. На схеме резонатор обозначен «QX ».

Обычно причиной неисправностью кварцевого резонатора становится сильный удар или падение устройства, в котором он находится. В этом случае резонатор подлежит замене на новый, с такими же параметрами. Такие неисправности возникают в маленьких приборах, которые проще уронить, или повредить. Но такие повреждения резонаторов встречаются не часто, и обычно неисправность устройства кроется совсем в другом.

Как проверить кварцевые резонаторы

Для проверки резонатора на его работоспособность, собирают специальный простой тестер, помогающий проверить кроме работы резонатора, еще и его частоту резонанса. Схема такого устройства похожа на кварцевый генератор, собранный на транзисторе.

Подключив резонатор между отрицательным полюсом и базой транзистора через защитный конденсатор, с помощью частотомера измеряют частоту резонанса. Такая схема подходит для настройки контуров колебаний. При включенной схеме исправный резонатор создает колебания. В результате на эмиттере транзистора возникает переменное напряжение с частотой резонанса тестируемого резонатора.

Если к выходу тестера подключить частотомер, то можно измерить частоту резонанса. При стабильной частоте и небольшом нагревании корпуса резонатора частота не должна значительно изменяться. Если частотомер не обнаруживает возникновение частоты, либо она сильно изменяется или имеет большие отличия от номинала, то резонатор негоден и требует замены.

При использовании такого тестера для настройки контуров, емкость С1 обязательна. Но при проверке исправности резонаторов ее присутствие в схеме не требуется. При этом колебательный контур просто подсоединяют на место кварцевого резонатора и тестер начинает создавать колебания таким же образом.

Тестер, выполненный по рассмотренной схеме, хорошо зарекомендовал себя на частоте 15-20 мегагерц. Для других интервалов можно найти другие схемы, собранные на микросхемах и других компонентах.

Сфера применения

Благодаря стабильности параметров кварцевых резонаторов, они нашли широкое использование в различных областях.

  • Многие измерительные устройства работают на основе таких резонаторов, при этом точность измерений очень высока.
  • Пьезокварцевая пластина применяется в качестве резонатора в морском эхолоте для выявления объектов, расположенных в воде, исследования дна моря, определения нахождения отмелей и рифов. Это дает возможность изучения жизни в океане в глубоководных районах, а также создания точных карт морского дна.
  • Кварцевые резонаторы нашли широкую популярность в кварцевых часах , так как частота колебаний кварцевой пластины практически не зависит от температуры, и имеет малое относительное изменение частоты.

Кварцевые резонаторы расширяют свою сферу использования, потребность в них постоянно увеличивается, так как они обладают повышенными метрологическими параметрами, эффективностью работы.

Поводом для создания этого прибора послужило немалое количество накопившихся кварцевых резонаторов как купленных, так и выпаянных с разных плат, причём на многих отсутствовали всякие обозначения. Путешествуя по бескрайним просторам интернета и пробуя собрать и запустить различные , было решено придумать что-нибудь своё. После многих экспериментов с разными генераторами как на разных цифровых логиках, так и на транзисторах, остановил выбор на 74HC4060, правда устранить автоколебания тоже не удалось, но как оказалось при работе устройства это не создаёт помехи.

Схема измерителя кварцев

За основу устройства взяты два генератора CD74HC4060 (74HC4060 не было в магазине, но судя по даташиту они ещё «круче»), один работает на низкой частоте, второй на высокой. Самыми низкочастотными какие у меня были, оказались часовые кварцы, а самым высокочастотным оказался негармониковый кварц на 30 МГц. Генераторы из-за их склонности к самовозбуждению было решено переключать просто коммутируя напряжение питания, о чём индицируют соответствующие светодиоды. После генераторов установил повторитель на логике. Возможно вместо резисторов R6 и R7 лучше установить конденсаторы (сам я не проверял).

Как оказалось, в устройстве запускаются не только кварцы, но и всякие фильтры о двух и более ногах, которые с успехом и были подключены в соответствующие разъёмы. Один «двуногий» похожий на керамический конденсатор запустился на 4 МГЦ, который после был с успехом применён вместо кварцевого резонатора.

На снимках видно, что применены два вида разъёмов для проверки радиодеталей. Первый сделан из частей панелек - для выводных деталей, а второй представляет фрагмент платы приклеенный и припаянный к дорожкам через соответствующие отверстия - для SMD кварцевых резонаторов. Для вывода информации применён упрощённый частотомер на микроконтроллере PIC16F628 или PIC16F628A, который автоматически переключает предел измерения, то есть на индикаторе частота будет или в кГц или в МГц .

О деталях устройства

Часть платы собрана на выводных деталях, а часть на SMD. Плата разработана под ЖКИ индикатор "Винстар" однострочный WH1601A (это тот у которого контакты слева вверху), контакты 15 и 16, служащие для подсветки, не разведены, но кому надо может для себя добавить дорожки и детали. Я не развёл подсветку так как применил индикатор без подсветки от какого-то телефона на таком-же контроллере, но сначала стоял винстаровский. Кроме WH1601A можно применить WH1602B - двухстрочный, но вторая строка задействована не будет. Вместо транзистора, что на схеме можно применить любой такой же проводимости желательно с бОльшим h21. На плате разведены два входа питания, один от мини USB, другой через мост и 7805. Также предусмотрено место под стабилизатор в другом корпусе.

Настройка прибора

При настройке кнопкой S1 включить режим НЧ (загорится светодиод VD1) и воткнув в соответствующий разъём кварцевый резонатор на 32768Гц (желательно с материнской платы компьютера) подстроечным конденсатором С11 установить на индикаторе частоту 32768Гц. Резистором R8 устанавливается максимальная чувствительность. Все файлы - платы, прошивки, даташиты на используемые радиоэлементы и другое, скачайте в архиве . Автор проекта - nefedot .

Обсудить статью ПРИБОР ДЛЯ ПРОВЕРКИ ЧАСТОТЫ КВАРЦЕВ

Кварцевый резонатор это кристаллический электронный прибор, поддерживающий резонансные колебания на заданной частоте. Кварцевый резонатор обладает высокой стабильностью и точность. Чтобы проверить работоспособность кварцевого резонатора, нужно собрать одну из предложенных ниже схем для проверки.

Здесь транзистор VT1 используется в роли генератора, а его частоту определяет проверяемый кварцевый резонатор. При поступлении питания на схему, генератор начинает генерировать импульсы с частотой его основного резонанса. Импульсная последовательность проходит через конденсатор С3, который отфильтровывает постоянную составляющую и поступает на аналоговый частотомер построенный на детекторных диодах VD1, VD2 и пассивных элементах С4, R3 и микроамперметре. В зависимости от частоты прямо пропорционально меняется напряжение на конденсаторе С4, то есть чем выше частота резонанса кварца, тем выше напряжение. Данным пробником можно не только проверить работу кварцевого резонатора, но и косвенно определить частоту его резонанса. С помощью этой схемы можно проверить кварцевые резонаторы с частотой от 3 до 10 мГц.


Если мы захотим более точно определить резонансную частоту кварцевого резонатора, необходимо подключить к выходу генератора частотомер или осциллограф. Он позволяет рассчитать частоту с помощью фигур Лиссажу. Однако не следует забывать, что кварц может возбудится как на основной частоте, так и на гармониках.

Проверка сразу двух кварцевых резонаторов


Эта радиолюбительская разработка позволяет проверить на работоспособность два кварца работающих на частоте 1 - 10 МГц и при этом имеется возможность определить сигналы толчков между частотами резонанса. Такая особенность схемы дает возможность отбирать кварцевые резонаторы с наиболее подходящими друг к другу частотами.

Схема выполнена на двух задающих генераторах. Первый из них, с кварцевым резонатором ZQ1 выполнен на транзисторе VT1. В случае, когда резонатор отключен на его выходе напряжение 0,8 – 1,1 В, что соответствует сигналу низкого уровня – 0. Поэтому на выходе DD1.2 будет 0, а на выходе DD1.3 1, Светодиод HL1 не светится. Второй генератор на VT2 работает аналогично.

При нажатии на кнопку SB1, VT1 закроется и светодиод HL1 загорится. При нажатие на SB2 загорается HL2. Если нажать одновременно SB1 и SB2, загораются HL1, HL2, HL4.

Когда кварцевый резонатор ZQ1 подключен возникновению колебаний фиксированной частоты, которые и снимаются с коллектора VT1 а, их амплитуда переключает инвертор на микросхеме DD1.1. С выхода DD1.3 высокочастотный сигнал попадает на светодиод HL1, из-за чего тот равномерно равномерное светится. Генератор, собранный на кварцевом резонаторе ZQ2 и VT2 работает также.

Для сравнения частоты двух генераторов выходные сигналы с инверторов DD1.2, DD1.5 поступают на DD2.1, DD2.2 и на их выходах получается сигнал с широтно-импульсной модуляцией и частотой приравненной к разности частот двух генераторов. Наглядно увидеть возможные биения можно по морганию светодиода HL4. Если нужна более высокая точность необходимо воспользоваться осциллографом, или частотомером.

Если частоты кварцевых резонаторов отличаются на килогерцы, чтобы понять какой кварц работает с более высокой частотой, нажимаем кнопку SB3 и происходит уменьшение частоты колебаний ZQ1 и если тон биений становится меньше, то следовательно ZQ1 обладает более высокой частоту по сравнению с ZQ2.

А я собрал ее на макетной панели. После сборки устройство начинает работать сразу. В качестве источника питания можно применить любой или набор батарей.

Резонатором называют систему способную на колебательные движения с максимальной амплитудой при определённых условиях. Кварцевый резонатор — пластина из кварца, обычно в форме параллелепипеда, действует так при подаче переменного тока (частота для разных пластин различна). Рабочую частоту этой детали определяет её толщина. Зависимость здесь обратная. Наибольшую частоту (не превышающую при том 50 МГц) имеют самые тонкие пластины.

В редких случаях можно добиться частоты в 200 МГц. Это допустимо только при работе на обертоне (неосновной частоте, превышающей основной показатель). Специальные фильтры способны погасить основную частоту кварцевой пластины и выделить кратную ей обертоновую.

Для работы подходят только нечётные гармоники (другое название обертонов). К тому же, при их использовании показания по частоте увеличиваются на более низких амплитудах. Обычно максимальным становится девятикратное уменьшение высоты волны. Далее засечь изменения становится затруднительно.

Кварц относится к диэлектрикам. В комбинации с парой металлических электродов он превращается в конденсатор, но его ёмкость мала и нет смысла её замерять. На схеме эта деталь отображается как кристаллический прямоугольник между пластинами конденсатора. Кварцевой пластине, как и иным упругим телам, свойственно наличие собственной резонансной частоты, зависящей от её размера. Пластины малой толщины имеют более высокую резонансную частоту. Как итог: необходимо лишь выбрать пластину с такими параметрами, при которых частота механических колебаний совпадала бы с приложенной к пластине частотой переменного напряжения. Кварцевая пластина, пригодна только при использовании переменного тока, поскольку постоянный ток может спровоцировать лишь единичное сжатие или разжатие.

В результате очевидно, что кварц является весьма простой резонансной системой (со всеми свойствами, присущими для колебательных контуров), но это вовсе не снижает качество его работы.

Кварцевый резонатор является даже более действенным. Показатель добротности у него составляет 10 5 — 10 7 . Резонаторы из кварца увеличивают общий срок службы конденсатора за счёт своей температурной устойчивости, долговечности и технологичности. Удобства в применении добавляют и небольшие размеры деталей. Но самое главное достоинство — способность обеспечивать стабильную частоту.

К числу минусов относят лишь узость диапазона сонастройки имеющейся частоты с частотой внешних элементов.

В любом случае, кварцевые резонаторы весьма популярны, и используются в часах, многочисленной радиоэлектронике и иных приборах. В некоторых странах кварцевые пластины устанавливаются прямо на тротуарах, а люди продуцируют энергию просто ходя туда и обратно.

Принцип работы

Функции кварцевого резонатора обеспечиваются пьезоэлектрическим эффектом. Данное явление провоцирует возникновение электрического заряда в случае, если происходит механическая деформация некоторых типов кристаллов (из природных сюда относят кварц и турмалин). Сила заряда при этом находится в прямой зависимости от силы деформации. Это называют прямым пьезоэлектрическим эффектом. Суть обратного пьезоэлектрического эффекта заключается в том, что если на кристалл воздействовать электрическим полем, он будет деформироваться.

Проверка работоспособности

Существует несколько несложных методов проверки состояния кварца в механизме. Вот пара из них:

  1. Чтобы достаточно точно определить состояние резонатора, потребуется подсоединить к генератору на выход осцилограф или частометр. Требуемые данные можно будет вычислить при помощи фигур Лиссажу. Однако, при подобных обстоятельствах возможно непреднамеренное возбуждение колебательных движений кварца как на обертонических, так и на основных частотах. Это может создавать неточность замеров. Такой метод может быть использован в диапазоне от 1 до 10 МГц.
  2. Частота работы генератора зависит от кварцевого резонатора. При подаче энергии генератор продуцирует импульсы, совпадающие с частотой основного резонанса. Череда этих импульсов пропускается через конденсатор, который отсеивает постоянный компонент, оставляя только обертоны, а сами импульсы передаются аналоговому частометру. Его легко можно сконструировать из двух диодов, конденсатора, резистора и микроамперметра. В зависимости от показаний по частоте будет изменяться и напряжение на конденсаторе. Данный метод тоже не отличается точностью и может применятся только в диапазоне от 3 до 10 МГц.

В целом, достоверную проверку кварцевых резонаторов можно осуществлять только при их замене. Да и подозревать поломку резонатора в механизме стоит только в самом крайнем случае. Хотя к портативной электронике, подверженной частым падениям, это не относится.

просмотров