Активныe двухполосные. Кроссовер для акустики - что это такое и для чего предназначен Активный кроссовер для акустики

Активныe двухполосные. Кроссовер для акустики - что это такое и для чего предназначен Активный кроссовер для акустики

Самодельный кроссовер для акустики

Самодельные кроссоверы для акустики нужны для разделения частотных диапазонов динамиков. Они выравнивают эти самые диапазоны по громкости звучания.
Самодельный кроссовер для акустики изготовить не так уж и сложно, если знать некоторые секреты.

Что такое кроссовер и с чем его едят

Для начала узнаем, а зачем нужен кроссовер?
Это специальное устройство, предназначенное для разделения ауди частот. Кроссоверы как бы убирают ненужные частоты, фильтруют их.

К примеру, существуют такие динамики(см.), как пищалки. Если бы не было кроссоверов, то на пищалки бы подавались все частоты, полный их пакет, вместе с НЧ и СЧ. Понятно, что это в итоге отрицательно скажется на детальности музыки.
ВЧ динамики, каковыми являются пищалки, не способны воспроизводить низкие и средние звуки и присутствие несвойственных частот станет в этом случае опасной проблемой.

Виды кроссоверов

Кроссоверы принято разделять на активные и пассивные, а также на однополосные, двухполосные и т.д.

Пассивный кроссовер, его плюсы и минусы

Итак:

  • Пассивный кроссовер фильтрует сигнал своими конденсаторами, резисторами и катушками. В результате именно этого и выявляется первый недостаток таких кроссоверов – потеря мощности.
  • Подключение пассивных кроссоверов проходит непосредственно перед динамиками. Получается таким образом, что достаточно использование всего одного усилителя(см.), что является несомненным плюсом пассивных кроссоверов.
  • Пассивные кроссоверы продаются отдельными блоками или в комплекте с акустикой, обычно двухполосной или более.
  • Среди недостатков пассивных кроссоверов можно выделить ограниченную пиковую нагрузку, что влечет за собой скорый выход из строя.

Активный кроссовер, его плюсы и минусы

Итак:

  • Используется активный кроссовер перед усилителем. Поэтому использование одного усилителя в данном случае просто невозможно.
    В случае с активным кроссовером каждый динамик, будь то пищалка или НЧ динамик, используют отдельный канал усилителя.
  • Преимуществом активного кроссовера можно назвать то, что в отличие от пассивного, он дает возможность точной настройки срезов. Именно этот фактор и определяет в большей части стоимость такого кроссовера, который дороже своего оппонента.

Кроссовер однополосный

  • Предназначен для среза канала сабвуфера(см.).

Кроссовер двухполосный

  • Предназначен для двухполосной акустики, состоящей из твитера и мидбаса.

Кроссовер трехполосный

  • Предназначен для трехполосной акустики, состоящей из твитера, СЧ-динамика и мидбаса.

Самодельные кроссоверы

Случается, что став обладателем дорогой автомобильной акустики, владелец обнаруживает, что в комплекте нет кроссоверов. Понятно, что без них обойтись будет невозможно, так как ВЧ динамики могут просто напросто сгореть.
Что делать? Ответ до смешного прост – изготовить их своими руками.

Инструменты

Для начала вооружимся необходимыми инструментами:

  • Хорошим и удобным паяльником.
  • Специальным прибором, измеряющим индуктивность.
  • Клеем «Момент».
  • Хлорным железом.
  • Фольгированным стеклотекстолитом.
  • Термоусадочной трубкой.
  • Силиконовым герметиком.

Пошаговая инструкция

Начинаем процесс изготовления.

Итак:

  • В первую очередь, надо тщательнейшим образом изучить теххарактеристики купленных динамиков. Особое внимание рекомендуется уделить низким частотам пищалок, а также уровню характеристической чувствительности НЧ и ВЧ динамиков.
  • Затем нужно подобрать правильную электрическую схему, подразумевающую подключение кроссовера.

Примечание. По мнению специалистов желательно отдать предпочтение фильтрам 2-ого порядка, ведь в тесном салоне авто наблюдается сильный подъем частотной характеристики на средне-высоких частотах.

  • Надо помнить, что ВЧ-динамики, которые подключаются через фильтр 1-ого порядка, сильно подчеркивают шипение, а НЧ-динамики чрезмерно выделяют яркие звуки. В итоге, складываясь вместе, получится кавардак, в котором будет много яркого и шипящего звучания.

Примечание. При этом, чем шире салон авто, тем удастся более минимизировать эти недостатки.

Катушка индуктивности

Итак:

  • Наматываем катушки индуктивности для динамиков. Отметим, что делая это для НЧ-динамика, лучше пользоваться медной проволокой, имеющей диаметр 1 мм и изолированной специальным лаком.

Совет. При изготовлении катушек рекомендуется пользоваться ферритовыми сердечниками. Это даст возможность получить меньшие габариты и вес, а также сократить расход недешевой медной проволоки. Кроме того, удастся уменьшить также активное сопротивление катушки.

  • Получившуюся индуктивность рекомендуется контролировать с помощью уникального прибора для измерения.

Совет. При наматывании проволоки крайне желательно делать виток и витку, а затем фиксировать клеем. Это даст возможность избежать проблем, с которыми часто сталкиваются новички.

Делаем печатную плату

Итак:

  • Пришло самое время начертить плату на бумаге. Делать это нужно, исходя из размеров получившихся катушек и резисторов.
  • Чертим плату и переносим ее на лист специального материала.

Примечание. В качестве такого материала неплохо было бы выбрать фольгированный стеклотекстолит.

  • Сверлим сразу отверстия под электроды будущих деталей и проводов. Обязательно протравливаем плату. Это нужно сделать следующим образом: полуготовую плату поместить в раствор хлорного железа.

Сборка

  • Платы нашего будущего кроссовера собираем согласно схеме установки.

Примечание. Катушки индуктивности и конденсаторы тщательно клеим к плате. Рекомендуется использовать хороший клей, такой как «Момент». Хорошая фиксация позволит самодельному разделителю длительное время работать безотказно в условиях вибрации и тряски.

Соединяем акустические провода

Итак:

  • Соединяем акустические провода, используя обычный паяльник. В работе нужно быть крайне внимательным и не перепутать выходы для НЧ и ВЧ-динамика. Обратить внимание нужно и на полярность.
  • Клей пригодится и здесь. Нужно залить «Моментом» провода, которые припаяли, что предохранит опять же от вибраций и возможных переломов.

Подключение

Итак:

  • Проводим пробное подключение и убеждаемся в том, что сигнал подается на каждый динамик с соответствующего выхода самодельного кроссовера.
  • Если это необходимо, то можно включить и резистор сопротивлением 4 Ом перед ВЧ-фильтром.

Примечание. Помним, что чувствительность ВЧ-динамиков на несколько децибел превышает чувствительность динамика, воспроизводящего низкие частоты – в итоге, пищалки играют громче НЧ-динамика.

Готовый своими руками кроссовер обтягиваем термоусадочной трубкой, соблюдая нужные размеры. Заливаем края обязательно силиконом, чтобы внутрь кроссовера не попала влага или пыль.
Представленная инструкция поможет изготовить самодельный кроссовер для акустики без особых проблем. В процессе операции рекомендуется изучить дополнительно фото и видео – материалы.
Что касается цены на расходные материалы, то она зависит от количества катушек и выходов под динамики. Немаловажное значение имеет и материал, который используется.

Устанавливая современную стереосистему в транспортное средство, владельцу необходимо правильно выбрать кроссовер. Сделать это несложно, если предварительно ознакомиться с тем, что он из себя представляет, для чего предназначен, и в составе какой акустической системы он будет работать.

Предназначение

Кроссовер — это специальное устройство в структуре акустической системы, предназначенное для подготовки требуемого частного диапазона для каждой из установленных звуковых колонок. Последние разработаны для эксплуатации в пределах определённых частотных диапазонов. Выход частоты сигнала, подаваемого на колонку за границы диапазона может привести, как минимум, к искажениям воспроизводимого звука, например:

  1. при подаче слишком низкой частоты исказится звуковая картина;
  2. при подаче слишком высокой частоты владелец стереосистемы столкнётся не только с искажением звука,но и с выходом из строя твитера (высокочастотного динамика).Он может просто не выдержать этого режима работы.

В нормальных условиях задачей высокочастотного динамика является воспроизведение звука только высокой частоты, низкочастотного, соответственно, низкой. Полоса же, средних частот подаётся на мидвуфер – динамик, отвечающий за звучание средних частот.
Исходя из вышесказанного, чтобы качественно воспроизвести автозвук, надо выделить соответствующие полосы частот и подать их на конкретные динамики. Для решения этой задачи и применяется кроссовер.

Устройство кроссовера

Конструктивно в кроссовер входит пара частотных фильтров, работающих следующим образом: например, если частота разделения установлена в 1000 Гц, один из фильтров будет выделять частоты ниже этого показателя. А второй – обрабатывать только полосу частот, превышающих заданную отметку. У фильтров есть свои названия: лоу-пасс – для обработки частоты ниже тысячи герц; хай-пасс – для обработки частоты выше тысячи герц.

Итак, выше был представлен принцип, по которому работает двухполосный кроссовер. На рынке существует и продукция трехполосного типа. Основное отличие, как становится понятно из названия, это третий фильтр, обрабатывающий среднюю полосу частот, от шестисот до пяти тысяч герц.

По сути, увеличение каналов фильтрации звуковой полосы, и последующая подача их на соответствующие динамики, приводит к более качественному и естественному звуковоспроизведению внутри авто.

Технические особенности

В большинстве современных кроссоверов присутствуют катушки индуктивности и конденсаторы. В зависимости от количества и качества изготовления этих реактивных элементов, обусловлена стоимость готового изделия.
Для чего же в полосной кроссовер входят катушки и конденсаторы? Причина в том, что это самые простые реактивные элементы. Они без особых трудностей обрабатывают разные частоты звукового сигнала.

Конденсаторы могут выделять и обрабатывать высокие частоты, в то время как катушки нужны для регулирования низких. Грамотно используя эти свойства, в результате можно получить самый простой частотный фильтр. Здесь нет смысла углубляться в сложные законы физики и приводить в качестве примера формулы. Тот, кто хочет более подробно ознакомиться с теоретическими основами, без труда найдёт информацию в учебниках или интернете. Профильным специалистам достаточно освежить в памяти принцип работы сетей LC-CL типа.

Количество реактивных элементов влияет на показатель разрядности кроссовера. Цифрой 1 обозначается один элемент, 2 – соответственно, два. В зависимости от количества и схемы подключения элементов, система по-разному осуществляет фильтрацию неподходящих частот для конкретного канала.

Есть смысл предположить, что большее количество применённых реактивных элементов делает процесс фильтрации лучшим. Схема фильтрации ненужных частот для конкретного канала имеет свою характеристику, называемую крутизной спада.

Фильтрам присуще свойство отрезать ненужные частоты постепенно, а не мгновенно.

Называется оно чувствительностью. В зависимости от этого показателя, продукция разделяется на четыре категории:

  • модели первого порядка;
  • модели второго порядка;
  • модели третьего порядка;
  • модели четвертого порядка.

Отличия между активными и пассивными кроссоверами

Начнём сравнение с пассивного кросовера. Из практики известно, что пассивный кроссовер является самой распространенной и чаще всего встречающейся на рынке разновидностью. Исходя из названия, можно понять, что пассивным не требуется дополнительное питание. Соответственно, владельцу транспортного средства проще и быстрее установить аппаратуру в своей машине. Но, к сожалению, быстрота не всегда гарантирует качество.

Из-за пассивного принципа схемы системе требуется забирать часть энергии из фильтра на обеспечение его работы. При этом реактивным элементам свойственно изменять сдвиг по фазе. Конечно, это не самый серьезный недостаток, но владелец не сможет тонко корректировать частоты.

Они редко встречаются в качестве отдельной аппаратуры, но в любом автомобильном усилителе, как составная часть присутствует активный фильтр. Из-за пассивного принципа схемы системе требуется забирать часть энергии из фильтра на обеспечение его работы. При этом реактивным элементам свойственно изменять сдвиг по фазе. Конечно, это не самый серьезный недостаток, но владелец не сможет тонко корректировать частоты.

Избавиться от этого недостатка позволяют активные кроссоверы. Дело в том, что, хотя и устроены они куда сложнее пассивных, но в них поток аудио фильтруется значительно лучше. Благодаря наличию не только катушек и емкостей, но и дополнительных полупроводниковых элементов, разработчикам удалось значительно уменьшить размеры устройства.

Они редко встречаются в качестве отдельной аппаратуры, но в любом автомобильном усилителе, как составная часть присутствует активный фильтр.

А также предлагаем вам ознакомиться с сопутствующей темой « ».

Особенности настройки

Чтобы в результате получить качественный автозвук, необходимо правильно подобрать частоту среза. При использовании активного трех полосного кроссовера следует определить две частоты среза. Первая точка будет обозначать грань между низкой и средней частотой, вторая – границу между средней и высокой. Владельцу автомобиля перед подключением кроссовера необходимо всегда помнить о том, что необходимо правильно подбирать частотные характеристики динамика.

Ни в коем случае не следует подавать на них частоты, на которых они попросту не смогут нормально работать. В противном случае это приведет не только к ухудшению качества звучания, но и к уменьшению срока эксплуатации.

Схема подключения пассивного кроссовера

Видео: Для чего нужен аудио кроссовер?

Надеемся, что эта статья помогла разобраться для чего нужен кроссовер. Оцените статью по 5 бальной шкале, если есть замечания, пожелания или вы знаете что-то, что не указано в данной статье сообщите нам! Оставьте свой комментарий ниже. Это поможет сделать информацию на сайте ещё более полезной.

Питер Латски обращает внимание, что в большинстве кроссоверов (разделительных фильтров для многополосных акустических систем) на частоте раздела НЧ/ВЧ наблюдается значительный (обычно от 45 до 90 электрических градусов в зависимости от порядка фильтров) фазовый сдвиг между напряжениями на НЧ и ВЧ выходах. Это приводит к существенным нарушениям целостности звуковой картины на средних частотах (ответственных за передачу голоса и основной части спектра большинства музыкальных инструментов), поскольку один и тот же сигнал излучается дважды: ВЧ звеном и НЧ звеном с большей или меньшей временной задержкой.

Условие, необходимое для идеальной звукопередачи, — постоянство характеристики группового времени задержки (ГВЗ). Т. е. линейная фазовая характеристика принципиально может быть получена только при использовании в кроссовере: ФНЧ Бесселя и всепропускающего (фазокорректирующего) фильтра Делияниса.

ФВЧ для формирования АЧХ для ВЧ звена вообще не могут быть применены. Ведь они формируют фазовое опережение, принципиально не стыкующееся, каким бы оно ни было, с фазовым запаздыванием ФНЧ и фазокорредтора Делияниса.

В фазолинейном активном кроссовере Питера Ласки (рис. 1.19) формирование сигнала для НЧ звена (выход Low) выполняет ФНЧ Бесселя четвертого порядка (ОУ А4, А5). На ОУ А2 выполнен фазокорректор Делияниса второго порядка, который имеет линейную АЧХ, но такую же ФЧХ и ГВЗ, что и ФНЧ Бесселя четвертого порядка.

Дифференциальный усилитель на ОУ АЗ вычитает из сигнала на выходе АЗ сигнал на выходе ФНЧ и таким образом формирует сигнал сопряженного с последним по частоте раздела ФВЧ (выход High), подаваемый на ВЧ звено акустической системы. При этом фазы напряжений на обоих выходах практически совпадают, что обеспечивает точную передачу пространственной звуковой картины.

С показанными на схеме номиналами элементов кроссовер применяется для акустической системы из электростатического ВЧ звена и изобарического («компрессионного») НЧ динамика. Частота раздела НЧ/ВЧ может быть легко скорректирована для других динамиков одновременным изменением емкости конденсаторов С21, С22, С41, С42, С51 и С52.

Рис. 1.19. Схема фазолинейного активного кроссовера

Рис. 1.22. Схема активного разделительного фильтра с настраиваемым суб-НЧ-компенсатором

Разделительный фильтр состоит из буфера U1А и трех ФВЧ Баттерворта 2-го порядка с частотами среза 4 кГц (U1B), 400 Гц (U2B), и 20 Гц (U3B).

Выход первого ФВЧ через резистор R9 подается непосредственно на усилитель мощности ВЧ звена (TREBLE, 4 кГц — 20 кГц), в то время как сигнал для СЧ звена (MIDDLE, 400 Гц — 4 кГц) формируется алгебраическим сумматором U2A из напряжений на выходах 4-х килогерцового и 400-герцового ФВЧ.

Рис. 1.23. Схема 3 усилителей мощности на ИМС TDA1514А

Примечание. Такое схемное решение обеспечивает «автоматическое» идеальное фазовое и амплитудное согласование на границах ВЧ/СЧ диапазонов без какого-либо подбора элементов.

Аналогично на резисторе R11 формируется сигнал НЧ звена (BASS, 20—400 Гц). Универсальность такого решения заключается в том, что резисторами R9, R10 и R11 можно независимо и оперативно подобрать оптимальный (соответствующий линейной АЧХ по звуковому давлению) уровень напряжения в каждой из полос (практически под любые динамики), не нарушая линейности фазовой характеристики. Это очень важно для точной передачи звуковой картины.

Кроме того, в НЧ канале имеется активный НЧ-компенсатор на ОУ U4A, расширяющий нижнюю границу акустической АЧХ с 63 Гц до 25 Гц.

Принцип действия НЧ-компенсатора основан на том, что собственная АЧХ АС закрытого типа имеет добротность QTC=0,66 и ниже частоты среза fc (тонкая линия на рис. 1.24) имеет спад 12 дБ/октава.

В разумных пределах этот спад весьма точно компенсируется «зади-ром» АЧХ с крутизной 12 дБ/октава, электрически формируемым каскадом U4A (EQUALIZATION RESPONSE на рис. 1.24).

Примечание. В результате АЧХ всей системы оказывается линейной до25Гц («жирная» линия на рис. 1.24).

Рис. 1.24. АЧХ исходной АС (тонкая линия), корректора (средняя) и результирующая (толстая)

Рис. 1.25. Компенсация стоячих акустических волн гулкого помещения

Необходимо заметить, что аналогичная компенсация в системах с фазоинвертором намного сложнее. Ведь последний сам по себе является фильтром с собственной АЧХ и ФЧХ, учесть которые без тщательных акустических измерений невозможно. Да и вряд ли это целесообразно из-за существенно большей крутизны спада АЧХ ниже граничной частоты.

Последний каскад в НЧ канале — темброблок субнизких частот на U4B. Он предназначен для компенсации подъема/завала акустической АЧХ, вызываемого акустическими свойствами комнаты.

Резистором R28 DEEP BASS, регулирующим АЧХ в диапазоне от 94 до 23 Гц на ±12 дБ, можно скомпенсировать негативные последствия стоячих акустических волн как маленькой комнаты, так и большого зала (рис. 1.25).

Усилители мощности (рис. 1.23) выполнены по типовой схеме включения TDA1514A. При питании от нестабилизированного источника ±23 В они обеспечивают до 28 Вт на нагрузке 8 Ом и до 48 Вт на нагрузке 4 Ом при нелинейных искажениях менее 0,003% и диапазоне частот от 3,2 Гц до 100 кГц. В статье, указанной далее, приведены все необходимые соотношения и формулы для расчета аналогичных систем с произвольными динамиками и параметрами.

Колонки с изюминкой: лаконичность схемы сочетается с тщательным исполнением корпуса.

Разрабатывая и изготавливая новую модель акустики, производитель пытается нарисовать портрет ее слушателя и оценить обстановку, в которой эта система будет установлена. Но я хочу описать конструкцию, идеологом создания которой стал ее будущий хозяин. Вот краткий перечень тех пожеланий, которые мы получили в качестве руководства к действию от очередного заказчика. Это должны быть напольные акустические системы для прослушивания спокойной музыки в уютной домашней обстановке. Они должны гармонировать с имеющимся интерьером, но иметь изюминку в дизайне.

Последним, но категоричным требованием было использование простейших разделительных фильтров первого порядка (похоже, сильно сказалось влияние на заказчика множества статей о вреде фильтров высоких порядков).

Вырисовывалась следующая картина:

1) низкочастотный динамик будет бумажным - порядок фильтра обязывает, хотя алюминиевый диффузор в сочетании с отделкой светлым дубом как нельзя лучше отвечал бы требованиям дизайна квартиры;

2) акустическое оформление - фазоинвертор, так как в результате прослушивания клиент однозначно отдал предпочтение этому типу;

3) система будет двухполосной;

4) интерьер комнаты подразумевал изготовление изделия с плавными линиями, и тут как нельзя лучше пригодилась уникальная методика «монолита», разработанная в нашей компании для производства корпусов. Все его грани получаются скругленными, что также благоприятно сказывается на проблеме дифракции в ВЧ-области.

И про изюминку не забыли: точеный дубовый тоннель фазоинвертора, выведенный на переднюю панель, как нельзя лучше дополнял плавные обводы углов.

Об авторe

Борис Пухов - выпускник Ленинградского Политехнического института, специалист по акустике в компании «Питер-Мьюзик». Принимает непосредственное участие в разработке АС по индивидуальным заказам, причем не только для Hi-Fi-систем, но и домашнего театра. Последнее достижение - запуск в производство автомобильных сабвуферов под торговой маркой Bloodhound.

Покопавшись в истории, мы решили взять за основу разработку пятнадцатилетней давности норвежской фирмы SEAS, благо сейчас в России с такими брэндами, как VIFA, SCANSPEAK и SEAS, проблем нет. Приятно было отметить, что восьмидюймовый бумажный вуфер Н333 и тканевый купольный высокочастотник H519 выпускаются и по сей день. Динамики были приобретены, и начался процесс воплощения в жизнь идеи клиента.

Корпус изготавливается из МДФ высокой плотности (боковые и задняя стенки 19 мм, передняя - 25 мм). После раскроя панели по периметру обклеиваются дубовым бруском таким образом, что в местах их стыков образуются лабиринты - 100-процентная гарантия от утечек. О герметичности конструкции свидетельствует и тот факт, что перед фанерованием приходится сверлить технологическое отверстие, т.к. колебание температуры воздуха приводит к втягиванию стенок. Таким способом и были собраны два 39-литровых корпуса.

Cтык «монолит»: 1 - дубовый брус, 2 - панель МДФ, 3 - шпон.

Особенностью метода «монолит» является то, что корпус получается неразборным, и поэтому перед установкой последней панели производится горячая накатка вибропоглощающего состава «визомат» на внутренние плоскости и установка фильтра. Наличие внутренних распорок придает конструкции дополнительную жесткость. Что характерно, при сборке не используется ни одного шурупа. Трехслойное покрытие матовым лаком надежно защищает корпус от колебаний влажности в помещении и подчеркивает рельефность структуры натурального дерева. Для установки на шипы-опоры в нижней панели на этапе производства монтируются потайные гайки М8.

Несколько слов о фильтре: катушки индуктивности с воздушным сердечником и межслойной пропиткой собственного производства. Конденсатор металлопленочный полипропиленовый К78-19, хорошо себя зарекомендовавший в акустических фильтрах.

Так как от этих колонок не требуется сильных смещений диффузора низкочастотной головки и «ветров» в тоннеле не предвидится, мы ограничились портом диаметром 70 мм. Длину подбирали экспериментально, настраивая корпус на собственную частоту резонанса головки (33 - 35 Гц). На время настройки устанавливался пластиковый тоннель, длина которого подбиралась экспериментально и получилась равной 150 мм. Учитывая скругленность краев точеного тоннеля, мы сделали его длиной 160 мм и вклеили его в корпус колонки. Динамики устанавливались в переднюю стенку на специально отфрезерованный посадочный пояс через прокладку из тонкой резины и закреплялись винтами с помощью саморазжимных бронзовых втулок.

Объем корпуса в нижней части был равномерно заполнен синтетической ватой, объем которой подбирался по минимальной резонансной частоте системы при заглушенном отверстии тоннеля. Все эксперименты и настройки проводились на одном корпусе, а второй был собран по образу и подобию, т.к. динамики фирмы SEAS славятся высокой стабильностью параметров однотипных изделий. Основным критерием качества готовых изделий клиент считал результат прослушивания. Оно производилось совместно с консервативным британским усилителем Musical Fidelity A220. Мягкий тембр, легкость и ажурность звучания с хорошей проработкой пространственной картинки позволяло длительно слушать музыку без признаков утомления, что вполне устраивало их хозяина. Мы все же решили снять АЧХ по звуковому давлению в ближнем поле с помощью спектроанализатора Audio Control SA-3055, используя встроенный генератор розового шума. Расположение микрофона не позволяло фиксировать работу фазоинвертора, о чем свидетельствует явный завал в НЧ области на светодиодном дисплее (шаг 1 дБ), в то время как при прослушивании проблем с басом не возникало. Чувствительность оказалась на уровне 89 дБ.

В завершение хочется отметить, что от качества изготовления корпуса в огромной степени зависит эмоциональное восприятие музыки и радовать глаз - не последняя задача современных акустических систем.

Магическая последовательность

«Фильтры» - понятие широкое. Даже электрические, даже частотно-разделительные, даже пассивные, даже предназначенные для использования в акустических системах. Всё равно пока - шире страны моей родной. Мы поставим задачу предельно конкретно, на 6 соток. Требуется разделить широкополосный сигнал с выхода усилителя таким образом, чтобы обеспечить оптимальную работу двух излучателей, специализирующихся на воспроизведении нижних и верхних частот звукового диапазона (то же самое, но короче - двухполоска).

Случай этот, в наш век трёхполосных фронтов и процессорных «голов», далеко не условный и не академический. Всё чаще (и далеко не по веянию моды) опытные мастера склоняются к 2,5-полосной топологии фронтальной акустики. Басовики (где-нибудь там, внизу) отфильтровали «головой», процессором или усилителем, а с СЧ/ВЧ начинается (и правильно, что начинается) священнодействие, которое очень нередко приводит к отказу от активной фильтрации в этой, чрезвычайно ранимой части звукового спектра. И здесь предмет нашего сегодняшнего обсуждения - один из очень перспективных методов борьбы за бескомпромиссный звук. Теперь - по порядку…

Наведение порядка

Про пассивные фильтры писано немало, переписано ещё больше, все всё в общих чертах знают. Бывают первого порядка, второго и так далее. Какой выбрать? Здесь давно сложились кланы «остроконечников» и «тупоконечников», и те и те и правы, и не правы одновременно, всё - по акустическим обстоятельствам. «Остроконечники» говорят: «Давайте разделим полосы между НЧ и ВЧ-излучателями как можно радикальнее, чтобы каждый занимался только присущим ему делом». Подход совершенно логичный: чем решительнее (а значит - с большей крутизной характеристики, а значит - фильтром более высокого порядка) ограничена полоса сигнала, подведенного, скажем, к мидбасу (будем всюду его называть мидбасом, потому что это короче всего, хотя из сказанного выше и того, что станет ясно чуть ниже, вытекает, что это, скорее всего, будет среднечастотник), тем меньше вылезет пакости, связанной с зонным режимом работы диффузора, в частности, окажется подавлен верхний, «кевларовый», резонанс жёстких диффузоров. Чем круче проходит АЧХ фильтра ВЧ, питающего сигналом пищалку, тем меньше на неё попадёт составляющих сигнала с частотой, близкой к её собственному резонансу, где ВЧ-головка производит максимум искажений. А главное - полоса, где головки излучают совместно, и где результат такой совместной работы менее всего предсказуем, тем уже, чем выше крутизна применённых фильтров. В общем, должна установиться полная гармония капиталистического образца: каждый занят своим делом, не лезет в чужие, с коллегой из другого частотного отдела встречается только во время обеденного перерыва, настолько короткого, что конфликту некогда развиться.

«А фаза? - кричат обычно на этом месте «тупоконечники. - Они же фазу крутят!» Чаще всего внятные протестные действия этими двумя выкриками и ограничиваются, ответ на встречный вопрос «ну и что?», как правило, даётся уже на языке жестов, из которых можно понять лишь уже сказанное: крутят, гады, нельзя же так. Да, действительно, чем выше порядок фильтра, тем быстрее происходит изменение фазового сдвига на выходе фильтра вблизи частоты раздела. «Ну и что? - стоят на своём «остроконечники. - Мы затем и свели к минимуму область совместной работы головок, где имеет значение разность фаз их излучения. А за пределами «обеденного перерыва» вступает в силу понятие абсолютной фазы, которую житель Земли на слух не воспринимает». Отсюда: в стане «остроконечников» есть очень сильные политические фигуры. Например, уже однажды приводившийся мной в пример элитной акустики Phoenix Gold («АЗ» №9/2002, вона когда было дело), все верхние модели CDT Audio, позже - EOS Opera, да и Зигфрид Линквиц, половина имени которого стала половиной имени знаменитых фильтров Линквица - Райли, менее как о четвёртом порядке и слышать не желает.

Тут, правда, «тупоконечники» достают из-за пазухи здоровенный булыжник, спорить с которым трудно и больно. Доказано умными людьми: только фильтры первого порядка корректно передают прямоугольный импульс. И ради этого (а это, кто сейчас поднял брови, надеюсь, таких немного - очень важно) приверженцы мягкой фильтрации готовы терпеть тяготы и лишения, связанные с неудовлетворительной фильтрацией внеполосного излучения. И широкой полосы совместной работы головок в двухполосной (как мы договорились) системе. Но ещё более умные из числа просто умных добавляют: хорошие импульсные характеристики двухполосной акустики с фильтрами первого порядка реализуются только при условии временной корректности излучения. То есть когда центры излучений НЧ и ВЧ-головок как минимум находятся близко друг к другу, как оптимум - размещены так, чтобы расстояние от центров излучения до измученных некогерентностью ушей было одинаковым.

Для справедливости отмечу: стану «тупоконечников» тоже есть кого предъявить, наиболее знаменитые приверженцы полного или частичного использования фильтров первого порядка в автомобильной акустике - Dynaudio, Morel и Eton. Сидите, сидите, не надо церемоний…

Теперь у нас есть практический ответ обоим непримиримым кланам одновременно: когда полосные излучатели находятся далеко друг от друга, никаких преимуществ фильтры первого порядка не имеют, одни недостатки. А когда близко - имеют. А это как раз случай «наших», автомобильных, трёхполосных систем. Когда басовик - там, внизу, а СЧ/ВЧ - у стойки, прижавшись друг к другу. В этом случае хорошие (подчёркнуто) пассивные фильтры первого порядка могли бы (мечтательно) вдохнуть новую жизнь и в незаслуженно (из-за нежелания возиться) забытую концепцию точечного излучателя, на манер, скажем, Morel Integra или (в меньшей, но далеко не нулевой степени) некоторых 4-дюймовых коаксиалов, у которых излучатели бывают очень неплохие (по отдельности), а вместе - ужас или максимум - полуужас, потому что фильтры - никакие, иногда - буквально. Теперь давайте выяснять, а можно ли сделать хороший фильтр первого порядка. Для этого…

Приведите детей

Рис. 1. Схема параллельного кроссовера.

Вряд ли они у вас совсем уж взрослые, так что подойдут. Известно из практики, что если работу какого-то устройства нельзя объяснить десятилетнему мальчику, оно, скорее всего, вообще не работает. Вот схема пассивного двухполосного фильтра первого порядка. Проще уже не бывает. Одна индуктивность, один конденсатор. Пришёл ваш сорванец? Теперь покажите ему рис. 1 и объясните правила игры: конденсатор С пропускает переменный ток тем лучше, чем выше частота. Индуктивность L тем лучше, чем частота ниже. Куда пойдёт ток с очень низкой частотой? Через индуктивность и на НЧ-головку. А на ВЧ - не пойдёт, она как бы заперта. Если частота будет повышаться, «кран», состоящий из индуктивности, будет постепенно закрываться, а второй, конденсатор - открываться, пока не окажется, что весь сигнал идёт на ВЧ-головку. Что нам и требовалось.

Рис. 2. Схема последовательного кроссовера

А теперь давайте эти же компоненты соединим по-другому (рис. 2). Вот пошёл от входа переменный ток низкой частоты. Как он может добраться до «земли» в низу схемы? Конденсатор на низкой частоте заперт, путь один - через НЧ-головку. Далее появляются два пути: через ВЧ-головку, у которой какое-никакое, а сопротивление, или же через индуктивность, у которой на низкой частоте сопротивления почти что никакого. На высоких частотах - всё наоборот, итог: через НЧ-головку идут низкие частоты, а высокие предпочитают более лёгкий обходной путь, через пищалку - высокие, потому что индуктивность не даёт им пройти мимо. Те же компоненты, но действуют они в другой манере. В первом кроссовере, параллельном, каждый из частотно-зависимых элементов вставал неодолимой преградой на пути «ненужных» частот, а два таких фильтра соединены параллельно и, вообще говоря, друг на друга никакого влияния не оказывают. Во втором, последовательном фильтре ёмкость и индуктивность шунтируют «лишние» частоты, а «нелишним» не оставляют иного пути, кроме как через предназначенную для них нагрузку. Интересно, давно это кому-то пришло в голову? И есть ли, собственно, разница?

Между Тилем и «Видеотоном»

Ответ на первый вопрос: давно. Кому первому, мне установить не удалось, но были два смутных воспоминания. Первое: схему последовательного кроссовера я видел в древнем (уже тогда) радиолюбительском справочнике, дававшем мне материал для размышлений в период обучения в средней школе (это глубоко в прошлом веке). Второе: такую же я видел в инструкции по эксплуатации колонок Videoton (130 руб. за пару, это тогда было грабежом) и уже, кажется, в роли студента, подивился остроумию схемы. Славу же таким фильтрам принёс небезызвестный джентльмен по имени Рихард Смолл. На рубеже 60-х и 70-х годов (то есть существенно после справочника, примерно одновременно с «Видеотоном» и заведомо, между прочим, до серии публикаций, после которых появилось понятие «параметры Тиля - Смолла») он сделал доклад на сессии Audio Engineering Society о любопытных деталях поведения таких фильтров, чем оживил интерес к ним.

Рис. 3. АЧХ кроссоверов первого порядка

Вопрос второй получит такой ответ: есть, хотя заметна становится не сразу. Приведу два графика АЧХ (рис. 3), оба получены для фильтров, показанных на рис. 1 и 2, для наглядности здесь и далее будем считать, что частота раздела кроссовера 1 кГц. Я знаю, что таких не делают, повторю - для наглядности. Говорите, там один график? Нет, два, полностью наложившихся друг на друга. Разницы в АЧХ не будет никакой, если номиналы элементов фильтра выбраны одинаковыми, по формулам для параллельных фильтров первого порядка с характеристикой Баттерворта (а у таких фильтров она, хоть ты тресни, другой не будет). Формулы суду известны, но чтобы вам не бегать, а мне потом не ссылаться:

L = R н /(2П ∙ F o) С = 1/(2П ∙ F o ∙ R н)

Рис. 4. Импеданс эквивалентов реальной нагрузки

При сопротивлении нагрузки Rн, скажем, 8 Ом и частоте раздела, как договаривались, 1 кГц получаем номиналы 1,27 мГн и 20 мкФ. Обратите внимание: в этом, абсолютно идеальном случае суммарная АЧХ кроссовера (чёрная линия) строго горизонтальна для обоих фильтров. Идеал же, как известно, недостижим. Как будут себя вести такие кроссоверы на реальной нагрузке с импедансом, зависящим от частоты? Для целей этого эссе я составил эквиваленты НЧ и ВЧ-головок с довольно типичными, ожидаемыми в реальной жизни параметрами. На рис. 4 - кривые их импеданса. В чём типичность: гипотетический мидбас - головка с резонансной частотой около 70 Гц (что, в общем-то, сейчас неважно) и довольно высокой индуктивностью звуковой катушки. А вот это - важно и типично для диффузорных НЧ/СЧ-головок. Пищалку я условно взял с резонансной частотой 650 Гц, что удобно для наших опытов, это всего на 2/3 октавы ниже запланированной частоты раздела. Резонансный пик - как у пищалки без демпфирования феррожидкостью, это отягчающее обстоятельство для кроссовера, индуктивность - умеренная, на практике часто бывает ещё ниже.

Рис. 5. Параллельный кроссовер на реальной нагрузке

Рис. 6. Последовательный кроссовер на реальной нагрузке

Как сработают наши фильтры-близнецы на такой нагрузке? Вот тут они и перестанут быть близнецами. На рис. 5 - АЧХ звеньев параллельного кроссовера и результат их суммирования, пунктиром показано, как должно было быть в идеале. В реале на АЧХ фильтра ВЧ вылез горб на частоте резонанса пищалки, он немедленно отразился на суммарной АЧХ, но это бы ещё ничего. Посмотрите, насколько упала эффективность ФНЧ оттого, что с ростом частоты импеданс его нагрузки (звуковой катушки мидбаса) растёт. Крутизна спада АЧХ, и так невеликая, ещё уменьшилась, а уже через октаву после частоты раздела фильтрация как таковая прекратилась. Суммарная АЧХ, как нетрудно заметить, слёзы да и только. Да, тут многие скажут: на то и придуманы цепи Цобеля, чтобы компенсировать индуктивность головки, при фильтрах низких порядков без Цобеля - кранты. Но ведь у нас пока одна индуктивность и одна ёмкость, попробуем что-нибудь сделать, оставаясь в рамках этого арсенала. Вот тот же набор АЧХ, но для последовательного фильтра (рис. 6). Посмотрите, совсем другой коленкор, почему, спрашивается? А потому: то, что было препятствием в работе параллельного фильтра, стало фактором повышения эффективности у последовательного. Мешала индуктивность НЧ-головки, а здесь, если вернуться к нашей аналогии с кранами, пропускающими (или задерживающими) различные частотные составляющие, когда с ростом частоты растёт сопротивление мидбаса, сигнал с ещё больше охотой идёт в обход, через ёмкость. Почему это не происходит в цепи пищалки, где эффект был бы обратным? Да потому, что в реальной жизни пищалок с большой индуктивностью нет.

А теперь - самое главное: как при замене резисторов эквивалентом реальных головок изменилась суммарная АЧХ? А никак. В этом - основное свойство последовательных фильтров, отсюда и название того, исторического, доклада Смолла: «Constant-Voltage Crossover Network Design». При любых обстоятельствах сумма напряжения на мидбасе и пищалке будет равна входному, то есть напряжению на выходе усилителя.

Рис. 7. Параллельный кроссовер, переменная активная нагрузка

Давайте сделаем такой опыт: пусть по какой-то причине сопротивление нагрузки одного из звеньев кроссовера оказалось отличным от расчётного. Ну мало ли, другой динамик подоткнули или у этого из-за нагрева возросло сопротивление звуковой катушки. Для ясности снова вернёмся к идеальной, омической нагрузке, потом, если захотите, покажу то же самое на реальной. На рис. 7 - результаты опыта с параллельным фильтром. Звено ФВЧ о происходящем в соседнем, ФНЧ, вообще ничего не знает, потому у него АЧХ остаётся неизменной. А у ФНЧ меняется (кривые соответствуют изменению нагрузки от 6 до 12 Ом), при этом двигается частота раздела, а суммарная АЧХ уже далеко не столь совершенна, как в случае расчётной нагрузки.

Рис. 8. Последовательный кроссовер, переменная активная нагрузка

Рис. 9. Параллельный кроссовер, переменная реальная нагрузка

Рис. 10. Последовательный кроссовер, переменная реальная нагрузка

Делаем то же самое с последовательным фильтром (рис. 8). Здесь изменение сопротивления одной из двух нагрузок влияет на АЧХ в обоих звеньях фильтра, однако суммарная АЧХ стоит как вкопанная в силу уже упомянутого обстоятельства. Constant-Voltage, как и было сказано. Раз настаиваете, вот тот же опыт на эквивалентах реальных головок. Рис. 9 - для параллельного кроссовера, фильтрация мидбаса не улучшилась, а при изменении омического сопротивления его звуковой катушки суммарная АЧХ меняется очень заметно. Рис. 10 - случай последовательного кроссовера, остальные условия - те же. В известных (и не катастрофических) пределах меняются обе составляющие АЧХ, сумма, как и прежде - кремень. Как видите, уже два практических результата мы имеем. А если ещё копнуть?

Греческая письменность

Есть такая греческая буква, называется «зета», пишется вот так: . Мощная буква, с её помощью можно сделать немыслимое: пользуясь всё тем же арсеналом частотно-зависимых элементов (одна индуктивность и одна ёмкость) строить кроссоверы с очень разными характеристиками. Для этого чудную букву мы вставим в уже приводившиеся формулы. Вот так:

L = ζ ∙ R н /(2П ∙ F o) С = 1/ζ (2П ∙ F o ∙ R н)

Рис 11. Параллельный кроссовер при различных значениях

Всё, что было раньше, предполагало, что= 1. Именно в этом случае на резистивной нагрузке параллельный и последовательный кроссоверы оказываются близнецами. А если греческий символ будет равен чему-нибудь другому? На это параллельный и последовательный кроссоверы будут реагировать совершенно по-разному. Если, скажем, менятьв диапазоне от 0,5 до 2 и выбирать номиналы элементов согласно этим значениям, с параллельным кроссовером произойдёт то единственное, что может произойти. При> 1 индуктивность будет больше расчётной, частота среза ФНЧ снизится, частота среза ФВЧ при уменьшенной (по формуле) ёмкости, наоборот, повысится. Формы АЧХ фильтров (рис. 11) останутся неизменными, а на суммарной АЧХ появится вполне ожидаемая «яма». При< 1 всё наоборот, кривые ФНЧ и ФВЧ сблизятся, на сумме - горб на частоте раздела.

Рис 12. Последовательный кроссовер при различных значениях

Проделаем то же самое с последовательным кроссовером (рис. 12). Как вам такое? Частота раздела - не шелохнулась, она в последовательном кроссовере исчерпывающим образом определяется величиной произведения L и С по известной формуле колебательного контура:

F o = 1/2П(L ∙ C) 1/2

Рис. 13. Сравнение с кроссовером 2-го порядка типа Баттерворта

Рис. 14. Сравнение с кроссовером 2-го порядка типа Линквица - Райли

Рис. 15. Сравнение с кроссовером 2-го порядка на реальной нагрузке

А оно при изменении останется неизменным. Зато будет меняться добротность контура, в результате форма АЧХ сигнала на ВЧ и НЧ-нагрузках будет существенно меняться. При> 1 (большая индуктивность, маленькая ёмкость) контур выйдет сильно демпфированным, АЧХ звеньев - иметь крутизну даже меньше 6 дБ/окт., область совместной работы головок станет широкой. Однако, как вы уже могли догадаться, суммарная АЧХ - снова горизонтальная прямая. При< 1 добротность контура возрастёт, при этом будет неуклонно возрастать крутизна спада АЧХ составляющих кроссовера. При= 0,7 она достигнет 9 дБ/окт., а при= 0,5 - всех 12 дБ/окт., фильтр первого порядка при этом становится сравним с фильтром второго. В качестве доказательства: на рис. 13 - АЧХ кроссовера второго порядка с фильтрами Баттерворта и АЧХ последовательного кроссовера на ту же частоту при= 0,5. Обратите внимание на горб высотой 3 дБ на суммарной АЧХ кроссовера второго порядка, таково его свойство: либо глубокий провал на частоте раздела (при синфазном подключении головок), либо невысокий горб - при противофазном. Такого горба нет у фильтра типа Линквица - Райли (рис. 14), здесь сопоставимой крутизны спада до уровня -15 - 20 дБ удалось достичь даже при менее решительном значении. И вновь, для проверки, заменим резисторы эквивалентом реальных головок (рис. 15). Столкновение с реальной жизнью тщательно (но теоретически) рассчитанному Баттерворту, как можно видеть, на пользу не пошло, а основанный на столь же теоретических расчётах и даже прощающий ошибки в определении, например, импеданса головок, последовательный фильтр сработал от «не хуже» до «лучше», в зависимости от того, на что смотреть.

Рис. 16. Зависимость входного сопротивления отна активной нагрузке

Рис. 17. Зависимость входного сопротивления отна реальной нагрузке

За счёт чего даётся последовательному фильтру такая гибкость, где-то и чем-то придётся же расплачиваться? В принципе - да, но кое-что из расплаты - недорого, а другое может оказаться не расплатой, а премией, если применить к месту. Расплата первая: чем ниже, то есть чем выше крутизна спада АЧХ фильтров, тем ниже падает импеданс на входе кроссовера вблизи частоты раздела, физические объяснение этому такое: при малых значенияхпоследовательный колебательный контур, образуемый двумя компонентами кроссовера, оказывается слабо демпфированным нагрузкой и начинает проявлять свойственный ему последовательный резонанс. Масштабы проблемы - на рис. 16, это - для идеальной, резистивной нагрузки. Если при= 1 импеданс на входе кроссовера не зависит от частоты и равен сопротивлению нагрузки НЧ и ВЧ-звена, то при предельно (на практике) низком значении= 0,5 импеданс на частоте раздела снизится вдвое. При> 1 - повысится, но этот случай нам меньше интересен. Случай реальной нагрузки - на рис. 17.

Рис. 18. Разность фаз между выходами кроссовера при различных

Рис. 19. Схема модифицированного кроссовера

Рис. 20. АЧХ кроссовера со «странным» резистором

Рис. 21. Зависимость фазового сдвига от значения RS

Второе: знаменитое «А фаза?!.» В идеальном случае (резистивная нагрузка,= 1), сдвиг фазы между выходами НЧ и ВЧ всюду равен 90 градусов, как и у параллельного фильтра, оттого им и фиолетово, в какой полярности подключены головки. При иных значенияхвеличина разности фаз сигналов НЧ и ВЧ будет меняться от частоты, на рис. 18 показано как, при крайних значениях греческой буквы. В умелых руках это не баг, а фича, здесь полярность включения начинает играть роль, а значит, появляется и дополнительный инструмент настройки (вспомним, если кто забыл, это про устройство, состоящее из двух деталей!). Кстати, кому этого мало, может добавить третью. Схема модифицированного кроссовера приведена на рис. 19. Здесь «поперечина», идущая к точке соединения конденсатора и катушки, заменена резистором RS. Почему «S» - узнаете. Выяснилось (не без некоторого удивления), что даже при небольших номиналах этого резистора, составляющих 5 - 15 % от сопротивления головок (в нашем случае 0,5 - 1,5 Ом), АЧХ звеньев фильтра заметно меняется, напоминая АЧХ так называемых «странных фильтров», нашедших применение в кроссоверах второго порядка (рис. 20). Суммарная АЧХ последовательного кроссовера от значения «странного резистора» RS, как обычно, не зависит, а вот фазовый сдвиг - зависит (рис. 21), значит - есть ещё одна степень свободы. Впрочем, кого ломает добавлять лишний элемент в элегантную простоту последовательного кроссовера, может попробовать что-нибудь отнять…

Убавить от неубавляемого

Рис. 22. Схема «бесконденсаторного» кроссовера Diaural

Рис. 23. АЧХ «бесконденсаторного» кроссовера

Рис. 24. Схема «антипатентного» кроссовера Acoustic Reality

Рис . 25. АЧХ кроссовера Acoustic Reality

Что, казалось бы? Два элемента, совесть надо иметь. Так вот это как раз про совесть. Как было уже написано, неизбежно присутствующая у мидбаса индуктивность в случае последовательного фильтра только помогает работе шунтирующего конденсатора. Вот тут кое-кому пришло в голову: а не обойтись ли только этой помощью, а конденсатор - выкинуть? Попробовали, причём не только в форме рацпредложения, но и на практике. Некто Эрик Александер, владелец компании Diaural (домашняя акустика по невменяемым ценам, США), подал заявку на патент под названием «Бесконденсаторный кроссовер». Там он признал, что да, последовательный кроссовер это здорово, даже упомянул, что их используют самые рафинированные изготовители домашней акустики (Sonus Faber, в частности, или Martin Logan), но вот конденсатор… Не любят их за что-то хай-эндщики. Вот дядя Эрик и решил конденсатор выкинуть, заменив его резистором, пусть мидбас себя фильтрует собственной индуктивностью. Пищалка же от попадания на неё низких частот по-прежнему защищена катушкой кроссовера, к индуктивностям у хай-эндщиков претензий куда меньше, тем более не последовательно включена, а параллельно, через неё идёт, стало быть, не полезный сигнал, а «слив». Вот иллюстрация к патенту, выданному в 2000 году (рис. 22), а на рис. 23 - результат нашего моделирования патентованного кроссовера. Как-то показалось, что не очень, ни на активной нагрузке (пунктир), ни на реальной, в отличие от обычного последовательного устройства. Но тут ещё - про совесть… Патент - могучий тормоз на пути распространения интересных технических решений, только cyнься - тебя на деньги. Науке неизвестно, совался ли кто-нибудь, или патент США за номером 6,115,475 остался украшением офиса компании, но, чтобы этот тормоз устранить насколько возможно, один датчанин опубликовал в Интернете свою схему аналогичного назначения. И объявил, зачем опубликовал: чтобы воспрепятствовать применению патентных ограничений, если некое знание является всеобщим достоянием, доказать нарушение патентных прав затруднительно, колесо никем не запатентовано именно по этой причине. Альтернатива - некоторая помесь обычного последовательного кроссовера и «бесконденсаторного» плюс дополнительный фильтр НЧ в цепи мидбаса, приводится на рис. 24. Ожидаемая АЧХ (рис. 25, пунктир - резистивная нагрузка, сплошные линии - реальная) тоже особого восторга не вызывает, тем более что исчезла магия «чистого» последовательного кроссовера - гарантированное суммирование ВЧ и НЧ-составляющих. Так что лучше пока оставаться на Клондайке, и здесь дел хватит…

просмотров